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ABSTRACT

Nontypical values in a data set are called outliers. The effects of outliers on a
time series may be serious because of dependence structure of successive
observations. Therefore, it is important to detect and handle outliers before the
analysis of a time series. This study attempts to investigate the effects of additive
outlier (AO) and innovational outlier (IO) in a time series using simulation data, and
to demostrate the detection and identification of outliers in selected economic time
series of Myanmar. From the simulated results, it is observed that the effect of IO on
mean is more significant for both AR(1) and ARMA(1,1) series but that of AO on the
mean is more prominent for MA(1) series. In addition, the effect of IO on the variance
is more obvious than that of AO for AR(1), MA(1) and ARMA(1,1) series. The
simulated results suggest that the percentage of correct model selection declines as the
value of outlier increases in the AO whereas it is not true in the IO of both AR(1) and
MA(1) series. Outliers can frequently occurred in economic time series due to unusual
events. Since the govenrment policy or implementation of new rule and regulation
had changed in our country, many economic time series could be affected. In the
detection and identification of outliers, there observed AR(1) model with an IO outlier
in 1986-87 and two AO’s in 1994-95 and 1998-99 for base metal and ores export
series, AR(1) model with an AO in 1978-79 for teak export series, AR(1) model with
an AO in 1978-79 and an IO in 1983-84 for wheat production series, AR(1) model
with an AO in 1979-80 for lablab bean production series and AR(1) model with an
AO in 1963-64 for lima bean production series. Based on the outliers detected, the

most fitted model of each series is constructed for forecasting purpose.
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CHAPTER 1

INTRODUCTION

1.1 Rationale of the Study

A time series is an ordered sequence of observations on a variable of interest
collected usually in time, particularly in terms of some equally spaced time intervals.
Time series exist in several fields such as agriculture, business, quality control,
economics, engineering, geophysics, medical studies, meteorology, natural sciences

and social sciences.

There are many different objectives for examining time series. These include
the understanding and description of the generating mechanism, the forecasting of
future values, and optimal control system. The main part of statistical methodology
available for analyzing time series is referred to as time series analysis. An important
feature of a time series is that, typically, adjacent observations are dependent or
correlated. Because qf dependence structure, statistical procedures and techniques that
rely on independence assumptions are not applicable and different statistical
techniques are needed for a time series analysis. It is required to develop a suitable
stochastic model for the analysis of observed time series data and it can be used in
several areas of application such as economics, business,' engineering, industrial

research, physical and social sciences, etc.

Economic time series are sometimes influenced by special events or
circumstances such as political or economic changes, strikes, outbreaks of war,
monetary crises, implementation of a new rule and regulation, advertising promotions
and similar events. These events are referred to as intervention events and they

usually bring outliers into the time series data.

Direct use of conventional statistical time series analysis may occasionally
ignore the fact that the observed time series no longer cover the time period with the
same condition. Consequently, it leads to use the inadequate model and to have the
biased estimates of the parameters in time series analysis. The intervention analysis
can be used to analyze the time series with outliers when the timing of intervention is

known. The method is then generalized to study the impact of the events when the



timing of interventions is unknown and hence leads to the general time series outlier

analysis.

Time series with outlying observations needs to be analyzed using statistical
outlier analysis. The effect of the change due to the unusual event and it’s position in
time series should be analyzed in order to provide the most suitable forecasts for the
future values. Thus the investigation into the presence of outliers, identification of
outliers, assessment of their effects and the remedial measures to accommodate ‘the
outliers become a crucial aspect of analyzing many economic time series and have

gained much important.

A time series with outliers can be model by adding intervention into ARIMA.
An ARIMA (Autoregressive Integrated Moving Average) model is an agebraic
statement telling how observations on available are statistically related to past
observations on the same variable. ARIMA models has three advantages over many
other traditional univariate time series models. First, the concepts associated with
ARIMA models are derived from a solid foundation of classical probability theory
and mathematical statistics. Second, ARIMA models are a family of models, not just a
single model, more appropriate models can be chosen out of this larger family of
models. Third, an appropriate ARIMA model produces optimal forecasts, that is, no
other single-series model can give forecasts with a smaller mean sequred forecast
error. Thus, ARIMA models can handle a wider variety of situations and provide

more accurate short-term forecasts than any other single-series technique.

In Myanmar, a change in the government policy (for example, from the
centralized economy to market oriented economy system) as well as implementation
of a new rule and regulation can be taken as an intervention, which can change the
level of several economic time series. Since the economic policies had changed to get
a better situation in our country, many time series data could be affected by the policy

changes.

Hence, this study would make attempts to detect and distinguish the outliers in
selected economic time series using the available outlier detection methods.
Moreover, possible reasons for the presence of the identified outliers in observed data

series will also be investigated. Then, the ARIMA model with outliers will be



constructed for the selected economic time series. The fitted models will be applied to

forecast the future values, which can be used in decision making and policy making.

1.2 Method of Study

An analytical method with the support of tables, figures, graphs and plots has
been extensively used in this study. This method is observed to be more suitable to the
nature and characteristics of the observed data series. More emphasis is put on
analytical method of time series analysis and forecasting for the analysis of the

selected economic time series data.

Moreover, the simulations are carried out in order to study the effects of
outliers on various statistics like mean, variance, some model identification tools such
as autocorrelation function (ACF) and partial autocorrelation function (PACF) as well
as some model selection criteria including Akaike's Information Criterion (AIC) and

Bayesian Information Criterion (BIC).

The data used in this study are compiled from various annual publications of
Report to the People, Report to the Pyithu Hlyuttaw, Review of Financial, Economic
and Social Conditions, Statistical Yearbook and various publications of Selected

Monthly Economic Indicators from 1950 to 2008.

1.3  Objectives of the Study
The objectives of the study are as follows:

(1) To review various outlier detection methods and their advantages and

disadvantages

(2) To investigate the effects of outliers in model identification and parameter

estimation

(3) To construct ARIMA models for selected economic time series with outliers

and

(4) To identify the positions and to distinguish the types of detected outliers.



1.4  Scope and Limitations of the Study

In this study, the nature and characteristics of the selected economic time
series are pointed out by using the basic statistics like mean, variance, autocorrelation

function (ACF) and partial autocorrelation function (PACF) etc.

Only the stochastic univariate time series model, namely Autoregressive
Integrated Moving Average (ARIMA) model is considered since most of the outlier
detection methods and techniques have been applied to ARIMA model. Existing
methods for detection and identification of outliers are used in ARIMA model fitting

to selected economic time series.

Outlier problems considered in this study are tackled only in time domain.

Only non-seasonal ARIMA time series models are considered in this study.

Among the various types of outliers which can occur in a time series, only
additive outlier (AO) and innovational outlier (IO) are considered most often in the

literature and this study focuses on these two types of outliers.

1.5  Organization of the Study
This study has been outlined in the following manners.

Chapter I mentions rationale of the study, method of study, objectives of the

study, scope and limitations of the study as well as organization of the study.

Chapter II introduces definition and types of outliers and reviews the possible
effects of outliers in time series, ARIMA models for time series with outliers, effects
of an outlier on original and error series and related literature as well as some
procedures for detection of outliers in time series together with their advantages and

disadvantages.

Chapter III explores the effects of outlier in model identification and

parameter estimation using simulated data.

Chapter IV includes ARIMA modeling for detection and estimation of outliers

in selected economic time series based on selected outlier detection methods.

Chapter V is concerned with forecasting and forecast evaluation for selected

economic time series with outliers.

Final chapter highlights conclusion, suggestions and further research problems

in the case of ARIMA modeling with outliers.



CHAPTER II
REVIEW OF OUTLIERS IN TIME SERIES DATA

2.1  Definition and Types of Outliers

Outliers in a time series data set can occur for different reasons. There are two
types of anomalies, namely gross errors and outliers. Gross errors are faulty
observations, for example, measurement, reading and typing errors. Identifying these
is the least controversial aspect of outlier detection, since gross errors should naturally

be identified and corrected whenever possible.

Time series data may often be affected by unusual events, external
disturbances or errors which create spurious observations that are inconsistent with
the rest of the series. When the timings of such unusual observations are unknown,
they are referred to as outliers if the events have large impact on the time series. If the
observation treated as a potential outlier cannot be shown to be a gross error, then it
has to be considered as an outlier. These observations, called outliers and their

detection, identification and modeling are considered in this study.

Outliers can take several forms in time series. The formal definition and a
classification of outliers in time series context were first proposed by Fox (1972). He
proposed a classification of time series outliers to type I and type II based on an
autoregressive model. These two types have later been renamed as additive and
innovational outliers, and are usually abbreviated as AO and IO respectively. AO
affects single observafion and there is no "carry-over" effect. IO affects the
observations from the outlier position onwards and it has "carry-over" effect as well

as decays.

Usually only AOs and IOs are considered in the literature, but Tsay (1988)
defines three more types of outliers, namely level shifts (LS), temporary or transient
changes (TC) and variance changes (VC). These LS and TC are not strictly speaking
outliers, but rather structural changes. The LS (sometimes known as level change),
simply changes the level (or mean) of the series by a certain magnitude from a certain
observation onwards. A TC is a generalization of AO and LS in the sense that it

causes an initial impact like an AO but the effect is not permanent and this effect dies



out gradually as exponentially decays. In some models, the effect of TC will be very
close to the effect of I0. A VC simply changes the variance of the observed series by

adding a new zero mean random variable and it does not affect the level of the series.

Furthermore, Wu, Hosking and Ravishanker (1993) proposed an interesting
type; a reallocation outlier (RO) that is defined as a batch of AO, the sum of whose

effects is equal to zero.

2.2 ARIMA Models for Time Series with Qutliers

In the outlier literature (e.g. Tsay, 1986 and 1988; Chen and Liu, 1993), a time
series with outliers is modeled as ARIMA plus intervention. The basic reference to

ARIMA model is Box and Jenkins (1976).

The ‘parametric approach to modeling a time series in terms of linear
difference equations has led to an important class of models, namely autoregressive
integrated moving average model with order p, d and q, popularly known as ARIMA
(p, d, q) (Box and Jenkins, 1976).

If Z, is an observed time series, then the ARIMA (p, d, q) model is
¢ B) (1-B)'Z:= 0(B) & @2.1)
where ¢ (B)=1-¢:1B-¢2 B? -...-¢poand9(B)=1—91B-92B2 -...-0qB%are
polynomials of degree p and q in B, ¢i,i=1,2,...,pand9; j=1,2,...,qare the
autoregressive and moving average parameters of the time series respectively and B 1s

the backward shift‘operator, that is, Bz, = Zj . In the above model, a; is the white

noise or error series with mean zero and variance Gaz referred to as the error variance.

It is assumed that the series (l-B)d Z, to be stationary, i.e., the roots of
¢ (B) = 0 lie outside the unit circle, and invertible, that is, the roots of © (B) = 0 lie
outside the unit circle. When d = 0, Equation (2.2.1) represents a stationary process

ARMA (p, q), given by
¢ (B) Z:=6 (B)a;. (22.2)

The ARMA (p, q) process Z; can also be represented as a random shock model

of the form

Z.=vy (B)a (22.3)
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where y (B) =1 + y; B + y, B +. . . and y weights are calculated by equating the
coefficients of B in the equation ¢ (B) y (B) =6 (B). For the series to be stationary, it

is assumed that y (B) converges for 'Bl <1, that is, on or within the unit circle.

Alternatively, the y weights have the condition i’w 5| < . Similarly, Z; can also be
i=0

represented as an inverted form of the model using the © weight as
n(B) Zi=a (2.2.4)

where 7 (B) =1—m B — mB?. ... The n weights are analogously obtained by
equating coefficients of B in ¢ (B) = 0 (B) n (B). To satisfy the condition of

invertibility it is assumed that m (B) converges on or within the unit circle.

Alternatively, the m weights are assumed to satisfy the conditionZ‘n Jl <. (Box,
=0

Jenkins and Reinsel, 1994).

Following Box and Jenkins (1976), analysis based on these models has been
extensively studied in the literature and for details Abraham and Ledolter (1983),
Chatfield (1989), Kendal and Ord (1990), Wei (1990), Box et al. (1994), Mills (1994),
Brockwell and Davis (1991, 1996) and Liu (2006) are referred.

Box et al., (1994) suggested that the principle of parsimony is important in
model building that is, the number of parameters p, d, and q of the fitted model must
be minimum. The inferential problems considered in the literature are identification
of the order p, d, and q in the model, estimation of the time series parameters and
error variance, diagnostic checking of the model, and forecasting the future values,

etc.

In this study, the analysis of stationary and invertible time series ARMA (p, q)

with outliers are considered.

Let Y, be the observed time series and Z; be the underlying time series which
is free of the impact of outliers. Assume that Z; follows a general ARIMA model in
Equation (2.2.1). Then the general outlier model for on observed time series Y; is

defined as

Y, =f(t) + Z (2.2.5)



where Z; is a regular ARIMA model and outliers are incorporated through f(t). The
f{(t) can take different outliers types.

An additive outlier (AO) model, that is, f(t) = P™ at time T in
ARMA (p, q) (Fox, 1972; Abraham and Box , 1979) is

Y=o PP+7Z, (2.2.6)

where Y, is the observed series, Z, is an unobserved outlier free series as in Equation

(2.2.1), @ is the outlier parameter — o < & < o0 and
P =1, t=T,
=0, t=T,

is the indicator variable representing the presence or absence of an outlier at time T.
The presence of AO is almost clearly seen in a time sequence plot as AO does not

have any carry- over effect.

An innovational outlier (I0) model at time T, that is, f () = o y (B) P(", in
ARMA (p, q) is specified by (Fox 1972; Abraham and Box, 1979)

Yi=oy B)PP +7, 2.2.7)

where Y; is the observed series, Z; is an unobserved outlier free series as in Equation

(2.2.1), o is the outlier parameter — o < & < o0 and
PO =1, =T,
=0, t+T,

is the indicator variable which represents the presence or absence of an outlier at time
T. The IO affects all observations Y1, Y+ 1, . . . beyond time T and decays with
y weights as it has carry-over effect.

In addition to these two main outlier types, two other types of outlier models
were proposed in the literature to handle sudden level changes which may be
temporary or permanent type, called the temporary change (TC) model and level shift
(LS) model (Tsay, 1988; Chen and Liu, 1993) respectively.

0

P, is expressed as
(1-sB) " P

The TC model at time T, that is, f(t) =




(1 —-O;B)

t

P + 7, (2.2.8)

where § is the damping factor with 0 <& < 1. A TC causes an initial impact on the
observation at time T like an AO but the effect passes on to the following
observations. The impact of a TC is not permanent; it decays exponentially according
to some dampening factor, 5. If § =0, the TC model is the same as the AO model in
Equation (2.2.6).

The LS model at time T, that is, f(t) = LPt(T), is the same as Equation

(1-B)

(2.2.8) when 8 = 1, given by

L0

(i-B)

where @ can be either positive or negative and the change is permanent . A LS simply

Y, = P + 7, 2.2.9)

changes the level (or mean) of the series by a constant magnitude o from a certain

observation Yt onwards till the end of the series.

It is not unusual to come across time series data with more than one outlier.
The problem of handling multiple outliers in time series is more complicated, for the

simple reason that the outliers could be of different types (Barnett and Lewis, 1994).

More generally, an oBserved time series Y, might be affected by outliers of
different types at several points of time Ty, T, . . . > Tk and we have the following

multiple outliers model of the general form

k .
Yo = Yo, ViB)P™ + Z (2.2.10)
j=1

where k is the total number of outliers present in the series, ®j, j=1,2,..., kare

the corresponding outlier parameters which may not be distinct and

V;B) =1 for an AO,
= y(B) for an IO,
= (1+SB) fora TC,
= : fora LS.

(1-B)
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when an outlier type present at time point Tj, j=1,2,..., k.

Another outlier type, variance change (VC) is still further away from the AO
and IO outlier types, and is not usually considered in connection with outliers at all . It
does not affect the level of the series directly like the other types of outliers. A VC
simply changes the variance of the observed series at a time by adding a zero mean,

variance (00'32 random variable to the observed series. This changes the observed

variance from o,2 to (1 + ®)’ oo

Wu et al.(1993) proposed an interesting further type, a reallocation outlier
(RO). This is defined as a batch of additive outliers, the total sum of whose effects is

equal to zero. A RO model is defined as

k
Y= >o,P +Z (2.2.11)

i=0

with the restriction that the sum X ©; be equal to zero. In this formulation there are
k + 1 outliers of magnitude w; at time t=T, T + ,T+2, ..., T+k.

The problems associated with these types of outlier models are to identify the
timing and the type of outliers and to estimate the magnitude ® of the outlier effect.
Among the various types of outliers which can occur in a time series, the AO and 10
are considered most often in the literature and only these two types of outliers are

focused in this study.

2.3 Effects of an Outlier on Original and Error Series
In this section, the effect of an outlier on the original series (outlier free series)
Z. which is a stationary and invertible ARMA (p, q) and the effect of an outlier on its
error series a; where t = 1, 2, . . ., n are presented. Consider the observed series Yj,
contaminated by a single outlier of AO or IO, given by
Y= oP +Z, for AO

= oyB)PP +7Z,, for 10. (2.3.1)

The model in Equation (2.3.1) allows the effect on only a single observation at
time point t = T of the original series Z; to be affected by AO, whereas the effect of 10

att = T carries over to the subsequent observations of Z; and decays with y weights.
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Suppose the observed series Y, is treated as a typical stationary and invertible
ARMA (p, q) series ignoring the presence of outliers. Then the residual series of Y, is
defined as

e.=n(B)Y: 2.3.2)
where n(B) = y ' (B)=1-) m;B'.
i=1
The error series of Z; is given by a; where
a; = n(B)Z.. (2.3.3)
However, since Y; is an outlier contaminated series, using Equations (2.3.1)

and (2.3.3), e, can be expressed in terms of a; as
For AO,  e=n(B)Y,=n(B)[oP® +Z]
= on(B)P" +a
For 10, er=7(B)Y; = n(B)[oy(B)P™" + Z;]
= 0P+ a - (2.3.9
From Equation (2.3.4), it can be seen that the presence of 10 affects a single
observation of a, series at only one time point t = T, whereas the effect of AO on a;
carries over to the subsequent observations and decays with w weights (Chang et al,

1988; Box et al, 1994).

Additive outlier (AO) Innovational outlier (10)
Dynamic effect
® ® l
L1
=T =T, T+1,T+2,...
Y, =P @+ 7t Y, = o wBPD +Zt

Figure2.1 The Effect of an Outlier on Z, Series

Figures 2.1 and 2.2 were presented by Soe Win (2004) to state a hypothetical
situation representing the effect of outlier of either type on original series Z; and error
series a; respectively with the outlier parameter of magnitude ® > 0. Note that the

— dynamic effect of IO on observations and that of AO on error series can be either

positive or negative depending on the signs of the weights y, 7, and .
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Additive outlier (AO ) Innovationaloutlier (I0 )
Dynamic effect

11, ®

=LT+1,T+2,... =T

W

e = TB)P D +ac e, =0P,(M+a,

Figure 2.2  The Effect of an Outlier on a, Series

To know the effect of an outlier on the analysis of the observed series, one
must understand the effect on the mean and variance, the estimates of time series
parameters, error variance, some other model identification tools such as
autocorrelation and partial autocorrelation functions, as well as some model selection
criteria including Akaike’s Information Criterion (AIC) and Bayesian Information

Criterion (BIC).

2.4 Possible Effects of Outliers in Time Series

The existence of the outliers has significant influence on the analysis of time
series data. The outliers may influence adjacent observations due to the presence of
autocorrelation pattern in a time series. The dependence structure of time series

observation makes the detection of outliers difficult.

In time series model building, there are four stages including identification,
estimation, diagnostic checking and forecasting. Thus, the existence of outliers in a

time series can affect on all these stages.

The model identification in the presence of outliers in a time series will be
misleading, unless outliers are somehow taken into account (Glendining, 1998). In
series of short to moderate length, the presence of a single outlier will often result in a
falsely model identification and the identified lag lengths will also be wrong.
(Deutsch, Richards and Swain, 1990).

Tsay (1986) also noted that exact results for the effects of outliers are

complicated and require lengthy computations. The outliers cause substantial biases in
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estimated model parameters (Chen and Liu, 1993). Various model estimation
procedures such as least squares and maximum likelihood methods are both sensitive
to the presence of outliers (Bustos and Yohai, 1986). Consequently, the misspedﬁed
model can be encountered in diagnostic procedure and it can lead to serious errors in

forecasting.

Outliers have also fairly obvious effects on forecasts, and especially outliers
near the beginning of the forecast period can have serious consequences. Point
forecasts may suffer only a little effect but the prediction intervals can become
severely misleading, as outliers inflate the estimated variance of the series (Ledolter,
1989 and Hotta, 1993). Some outliers have more serious effects on point forecasts
even when outliers are not close to the forecast origin, and they increase the width of

prediction intervals as well (Trivez, 1993).

In addition, outlier analysis has two special problems to consider, namely,
smearing and masking. These concepts are related to the detection of outliers, and can
even be intertwined. When one outlier affects the series in a manner that makes other
observations appear to be outliers as well, where they are in fact not, it is called
smearing. Conversely, masking means that one outlier hides others from being
detected. These notions are closely connected to specific outlier detection methods,
and are not properties of the data itself. In other words, smearing and masking are

only deficiencies of certain methods, not type of outliers as such.

Apart from affecting the estimates of model parameters and forecasting, the
outliers can distort the model specification itself and the impact of outliers in time
series modeling can be serious enough to affect the credibility of the model (Barnett

and Lewis, 1994).

For the existence of outlier's effect on the model building procedure, the
conventional time series analysis may have some problems and outliers appeared by
tme series nature should not be deleted. Therefore, the positions of outliers and the
pattern of outliers are necessary to know for constructing the models for time series

1th outliers.
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When the position of outliers is known, an appropriate handling can be made
using intervention analysis (Box and Tiao, 1965). However, the presence of outliers in
many situations is rarely known beforehand. Hence the crucial step in analysis of time
series with outliers is the construction of an appropriate model representing outliers in
the data. In doing so, it is important to understand the nature of outliers and their

impact on the time series.

2.5 Literature Review
2.5.1 Detection and Identification of Outliers

Fox (1972) introduced models to accommodate the presence of two types of
outliers called additive outlier (AO) and innovational outlier (IO) in autoregressive
time series data. He also proposed a likelihood ratio test for outlier detection.
However, he did not propose any method to differentiate between AO and IO.

Abraham and Box (1979) were the first to introduce the Bayesian approach in
the time series models with the outlier types AO and IO. Then, extended the models
introduced by Fox (1972) to ARMA (p, q) and Bayesian parametric inference
procedure for time series parameters as well as outlier parameters in the presence of
both types of outliers in the case of AR (p) were carried out. Based on generated data
from AR (1), some numerical examples were also presented by Abraham and Box.

| Following Fox (1972), an iterative detection procedure for outliers in ARIMA
models was proposed by Chang and Tiao (1983). This procedure is based on
likelihood ratio test and involves the identification of the outlier types as well. They
also showed that AO can cause serious basis in parameter estimation whereas 10
only have minor effects in estimation. Tiao (1985) also illustrated this procedure
using two real life data sets.

Muirhead (1986), removing the drawback of Fox’s approach, introduced a
likelihood ratio test for detection of single outlier and identification of the type of
outlier. He proposed a Bayes rule to differentiate between AO and IO type. The
proposed method for the identification of outliers was also compared with the
corresponding Bayes rule proposed by Abraham and Box (1979).

A number of authors addressed the Bayesian approach to outliers in time
series. As presented earlier, Abraham and Box (1979) were the first to present the

Bayseian analysis which was followed by Murihead (1986), who proposed a Bayes
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rule to differentiate between AO and IO type. Then, Smith (1983) considered a
general approach to robust Bayesian methods with specific consideration of outliers in
time series. Ameen and Harrison (1985) presented Bayesian forecasting methods in
the presence of outliers from contaminated sources.

All the iterative likelihood ratio test procedures were based on the assumption
that time series model is known. Tsay (1986) whereas proposed an iterative procedure
for model specification of time series in the presence of outliers by using effectively
the iterative outliers detection procedure proposed by Chang and Tiao (1983).

The iterative likelihood ratio test procedure for detection of IO and AO and
estimation of time series parameters of ARMA in the presence of outliers was also
provided by Chang, Tiao and Chen (1988). In their work, a detailed discussion on the
performance of the iterative procedure in the context of AR (1) and MA(1) with up to
two outliers, was also made on the basis of simulation.

By using a similar iterative outlier detection and identification procedure
based on likelihood ratio test, Chen and Liu (1993) introduced a procedure for joint
estimation of model parameters and outlier effect in ARMA. In this procedure, if an
outlier is detected at any stage of iteration, depending on the detection of outlier type,
the series can be properly adjusted. It was revealed that if an IO is detected at time
point, the adjusted observation at t = T is the conditional expectation of the original
observation given the past. It is like the AO case, where the adjusted observation is an
interpolation based on past and. future observations. Chen and Liu, also after
investigating the effects of different types of outliers on the observed series,
expressed that “ ... the effect of an IO is more intricate than the effects of other types

of outliers.”

2.5.2 Robust Estimation Procedures in the Presence of Outliers

Robust estimation procedures for parameters of time series in the presence of
outliers have been considered by a number of authors. Firstly, Denby and Martin
(1979) proposed a class of generalized maximum likelihood estimates (GM-estimates)
for AR (1) model in the presence of a single outlier of either type. It was shown that
though GM-estimate perform moderately well in the presence of outliers AO and
10, the M-estimates perform much better in the presence of 10.

Martin (1979) extended the GM-estimates to AR(p) model. He also discussed

some theory and methodology of robust estimation for time series with AO and IO as
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well as the problem of patch outliers. Furthermore, he proposed a formal significance
test and a residual plotting diaghostic technique for determining the outlier type.

Martin and Yohai (1985) presented a detailed review of robust estimators for
ARMA model with outliers. In their paper, they also briefly discussed the influence
curve of time series with AO and IO from isolated to patch outliers.

Bustos and Yohai (1986) pointed out that the GM-estimator has a complicated
asymptotic covariance matrix. They proposed two new robust estimators based on
residual autocovariances (RA-estimators) and truncated residual autocovariances
(TRA-estimators). The proposed estimators were compared with least squares (LS)
estimator, M and GM estimators for AR(1) and MA(1) models with AO and IO
outliers. Based on Monte Carlo results, it was shown that RA estimators are not
qualitativelty robust when the model has the moving average part but much stable
than LS and M estimators in the presence of AO.

Luceno (1998) proposed robust estimators in the presence of nonconsecutive
multiple outliers in ARMA (p, q) series based on re-weighted maximum likelihood
estimator using Huber or redescending weights. A multiple outlier detection
procedure was also introduced by choosing appropriate weights for robust ARMA (p,
q) fitting.

2.5.3 Influence Function Approach to Outliers

A different approach to outlier detection based on influence function was
proposed by Chernick, Downing and Pike (1982). Using the influence functions of the
autocorrelation function, they.investigated the effect of outliers on stationary time
series but this procedure cannot identify the types of outliers.

Various diagnostic procedures for deletion of outliers and influential points in
regression models have been discussed in literature (Cook and Weisberg, 1982;
Chatterjee and Hadi, 1988). Abraham (1987) and Pena (1987) also were the first in
adapting some of these procedures to time series models. Abraham discussed
diagnostic tests based on deletion of suspected observations and in particular the
impact of deletion on Q statistic (Draper and John, 1981) for AR (1) series.

Pena (1987) also discussed sample influence function for parameters in the
presence of outliers in ARMA model as another attempt in this direction. By treating
a single observation as missing in turn, Pena (1987) investigated the impact of outlier

on parameter estimation through sample influence function. Using least squares
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predictors, the missing values were estimated. The procedure is a natural
generalization of leave-one-out technique in regression diagnostic. A somewhat
similar example of influence methods was also presented by Abraham and Chuang

(1989), though only for AR models.

2.5.4 Deletion Diagnostics and Other Procedures

Abraham and Chuang (1989) investigated the effect of deletion of k
observations on Q statistics in case of ARMA (p, q) and they proposed an outlier
detection procedure based on Q statistic which can be used for identification of outlier
type as well. They also presented a modal building strategy based on the investigation
of the pattern of Q statistic. Abraham and Chuang (1989) also claimed that in time
series analysis, some suspected outliers may lead to large residuals but may not affect
the parameter estimates, whereas other outliers may not only lead to large residuals
but also may affect model specification and parameter estimation.

Bruce and Martin (1989) proposed an in-depth leave-k-out diagnostics
approach to outliers in time series, where k consecutive observations were treated as
missing and the parameters were estimated using Kalman filter in case of
ARIMA (p, d, q). They also investigated the effect of missing observations on sample
influence function of time series parameters and error variance, which led to various
diagnostic tests. Since k consecutive observations were treated as missing, the
proposed procedure was shown to handle outlier’s patch and avoid the masking effect.
While investigating the usefulness of various estimators in outlier diagnostic
procedure, Bruce and Martin (1989) showed that the diagnostic based on error
variance has better properties than the diagnostic based on time series parameters.

Cook (1986, 1987) proposed a general measure of model perturbation using
likelihood displacement measure. Ledolter (1990) also made another attempt at using
deletion diagnostics for detecting outliers in time series. The impact of outlier on
Cook D statistic (Cook and Weisberg; 1982), which is equivalent to likelihood
displacement criterion, was investigated by treating each observation as missing. He
also investigated the behaviour of the proposed diagnostic procedure and presented
simulation study for AR(1) process. He further investigated the additive outlier model
and claimed that the sensitivity of variance estimate depends on the difference
between observations and their interpolation values, which justifies the satisfactory

behaviour of the deletion procedure in the presence of AO. Ledolter (1990) has also
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emphasized the use of error variance to detect the presence of outlier in the time
series. Based on this empirical study, he also concluded that the error variance is an
appropriate statistic to investigate the presence of outliers of either type. ,

Schmid (1986, 1990) considered multiple outliers problem, and derived a test
of discordancy for AO type of outliers in an AR process. In addition, he investigated
the asymptotic behaviour of the test. Schmid (1989) also proposed a UMPU test for
AO identification in an AR model. Next, Schmid (1996) introduced an alternative
multiple outlier detection and identification test procedure for AR process which is
based on observed and predicted values at each time instance. The asymptotic
distribution of the test statistic under the hypothesis of outlier free model was also
derived. Further, Schmid presented a simulation-based performance comparison of
various procedures with the proposed procedure.

Ljung (1993) expressed that analogous to the estimation of outlier parameter
in regression model, the estimation of additive outlier in ARMA (p, q) is directly
related to estimation of missing or deleted observation and established the relation
between leave-k-out diagnostics procedure by Bruce and Martin and likelihood ratio
criteria. Ljung, however, pointed out that deletion diagnostic measures are expected to
perform well for AO but not IO.

Alternatively, McCulloch and Tsay (1994) and Barnett, Kohn and Sheather
(1996, 1997) alternatively used Markov Chain Monte Carlo (MCMC) methods to
detect outliers and compute the posterior distribution of the parameters in case of
ARIMA.

McCullogh and Tsay (1994) proposed the procedure using Gibbs sampling.
They revealed that the Gibbs sampling provides accurate parameter estimation and
effective outlier detection for an AR process when the outliers do not occur in
patches. However, Justel, Pena and Tsay (2001) showed that the procedure is not
efficient in the presence of patches of additive outliers in an autoregressive process.
They also pointed out that the leave-k-out procedure cannot efficiently determine the
block size of the patches of outliers. Their procedure consists of modification of
standard Gibbs sampling and the algorithm presented is shown to work effectively
using real life and simulated data.

De Jong and Penzer (1998) did another approach to diagnostic checking of

outlying values, level shifts and switches using state space modeling of time series.
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Tsay, Pena and Pankratz (2000) stretched out the outlier problem in univariate
time series to a vector-valued autoregressive integrated moving average series. They
discussed about the effect of multivariate outlier and its impact on the joint and
marginal models. The discussion pointed out that the effects depended not only on the
outlier size and the model, but also on the interaction between the two. In this study,
they proposed and investigated two statistics for various types of outlier detection.

Soe Win (2004) proposed a different diagnostic procedure known as
adjustment diagnostics. Two separate models (AR and MA) for two types of outliers
(AO and IO) were considered in this procedure. Besides, each observation was treated
as a possible outlier of each type in turn and the observed series was appropriately
adjusted, taking into account the underlined model and estimation of parameters. The
model adjustment was shown to be similar to deletion diagnostics of Ledolter (1990)
in case of AO and was also shown to handle the influence of IO on successive
observations. Both from theoretical and empirical points of view, the adjustment

diagnostics were presented.

2.6  Procedures for Outlier Detection

The ideas to find time series outliers were to examine higher moments, in
practice skewness and kurtosis, of the series or to apply some smoothing process.
These methods are simple and perhaps useful in some cases, but obviously not
sufficient for wide variety of situations encountered in empirical time series analysis.
It was therefore necessary to consider more complicated methods and some of these
are presented.

In practice, the timing of an intervention event may or may not be known.
Often in such cases, when the timing and causes of a series of interventions are
known, an appropriate handling can be carried out using intervention analysis that
was proposed by Box and Tiao (1965). Following Box and Tiao, time series with
unusual observations were analyzed using intervention analysis in the literature
(Glass, Willson and Gottman, 1975, Kendall and Ord, 1990, Wei, 1990, Box, Jenkins
and Reinsel, 1994, Liu, 2006). In many situations, the timing of intervention is rarely
known beforehand and it has significant influence on the analysis of time series. . It
leads to the general time series outlier analysis. The presence of outliers is often not
known at the start of the time series data analysis; additional procedures for detection

of outliers and assessment of their possible impacts are important in practice.
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There are a number of outlier detection methods. The number of outliers to be
detected varies (either one or more than one), and in methods of multiple outliers
there is a distinction between tests with known and unknown numbers of outliers to be
identified. In time series analysis a well-specified model is a necessary requirement
for all methods. The most common models considered are ARIMA and dynamic
regression models. |

Some of the outlier detection methods are close to one another. Outlier
detection methods are also connected to the analysis of missing data. An additive
outlier can be treated as if the observation in question were missing, and a new value
estimated to replace it. This point is noted and utilized by many authors. It is also
interesting to note that many of these methods have got their idea from regression
analysis. This is perhaps not so surprising, since regression analysis is the idea of the
first developments in outlier detection and modeling, and also of the most advanced
and widely accepted methods.

The procedures for outlier detection in time series can be classified into two
groups: formal procedure (derived from a general theory) and informal procedure
(intuitively reasonable and ad hoc manner). In this chapter, the formal and informal

procedures of outlier detection based on available literature are presented.

2.7 Formal Procedure

The well-known formal procedure for detection of outliers in a time series is
the likelihood ratio test, which was first proposed by Fox (1972) followed by Chang
and Tiao (1983), Tiao (1985), Tsay (1986), Chang, Tiao and Chen (1988) and Chan
and Liu (1993). Other references on this topic include Abraham and Box (1979),
Martin (1980), Hillmer, Bell, and Tiao (1983).

2.7.1 Likelihood Ratio Criterion

The idea of using likelihood ratio test to detect outliers in time series was also
originally proposed by Fox (1972). He classified time series outliers to type I
(additive outlier) and type II (innovational outlier) based on an autoregressive model.
The basic idea (in an autoregressive model) is to add a dummy variable for every
observation in turn, maximize these likelihoods, and see whether the maximum of the
likelihood ratio statistics thus achieved is significant. Fox also suggested the use of

more practical simplifications of likelihood ratio test, such as standardized estimated
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errors in the observations being tested. These were developed by, among others,
Muirhead (1986), Chang, Tiao and Chen (1988) and Tsay (1986, 1988), and are also
used as a part of a complete outlier modeling strategy.

The models for additive outliers (AO) and innovational outliers (IO) are as
described in Equations (2.2.6) and (2.2.7) respectively. These two models can be

written in terms of the innovation sequence a;'s as follows:

AO: Y, = 9—(B—)a, +oP," (2.7.1)
¢(B)
‘ _0(B)
I0: Y, = i (a‘ + P, ) (2.72)

Thus, the AO case may be called a gross error model, since only the level of

the t™ observation is affected. On the other hand, an IO represents an extraordinary

shock at time point T influencing Y1, Y141, . . . , through the dynamic system
described by @
¢(B)
Letee=n(B) Y fort=1,2,...,n where n(B) = % We can write
Equations (2.7.1) and (2.7.2), respectively as
AO: e, =on(B)P" +a, (2.7.3)
10: e, =P +a, (2.7.4)

In other words, the information about an IO is contained in the residual et at
that particular point T, whereas that of an AO is scattered over a string of residuals er,

CT+ly - - - -

For n available observations, the AO model (2.7.3) can be written as

—e‘ ) ’0 ] —al
€11 0 at_y ( ol )
eT 1 + ar
=0
€141 kad! AT+
€142 —n2 aT+2
€n L™ ®n-T | 2,

Let ®, be the least square estimator of @ for the AO model. Because {a} is
white noise, from the least squares theory, we have
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AO: &, =—E

n-T
2
=0
=p*n (F)er (2.7.6)
-1
n-T
where p* = (an) andn (F)=(1-m F-mF -...-n.1F"",F is the forward
=0

shift operator such that Fe; = e.4;. The variance of the estimator is
var(®, ) = p’c? (2.7.7)
Similarly, letting @, be least squares estimator of o for the IO model, we have

I0: &, =e; (2.7.8)

and
var(®,) = o2. (2.7.9)
Thus, the best estimate of the effect of an IO at time T is the residual er,

whereas the best estimate of the effect of an AO is a linear combination of eT.€T+1, - - -

and e, with weight depending on the structure of the time series process. Since p’<1,
it is easily seen that var(®,) < var(®,)= o’ and in some cases, var(®, ) can be
much smaller than .

Let Hy denote the null hypothesis that ® = 0 in Equations (2.7.1) and (2.7.2),

“Hj denote the situation @ # 0 in Equation (2.7.1) for AO and H, denote.the situation

o # 0 in Equation (2.7.2) for IO. The likelihood ratio test statistics for AO and IO are

Y

HOVS H] : Kl,'r = ®a
po,

Hovs Hy :  pr =20 (2.7.10)
Ga

Under the null hypothesis Hy, the statistics A1 and A, 1 both have the standard
normal distribution.

The likelihood ratio method further leads to the criteria

AO - max |M,T |
t=1,...., n

10 max ’Kz,T |
=1,..,n

for testing the possibility of an AO or IO, respectively, at an unknown position in the

series Yi,...,Yn.
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A simple rule was mentioned by Fox (1972) as a possible way to distinguish
between AO and 10. At any suspected point T, the possible outlier is classified
asan AOif |Arz| > [Ayr]and it is classified as an 10 if | arl < ).

In practice the ARMA parameters and o, are usually unknown. Estimates of
these parameters, together with that of @ under either the AO or the IO case, can be
obtained by maximizing the likelihood function of (91, ...,9p,0,..., 8, @, of) in
the same fashion as that described by Box and Jenkins (1976). Based on these

estimates, the likelihood ratios can be computed accordingly for testing the

hypotheses, one against another, in Equation (2.7.10).

An Iterative Procedure for Outlier Detection
The procedure for the detection of outliers in a time series at unknown

positions is as follows:

Step 1 )
Model the series {Y,} by assuming that there is no outlier. From the estimated

model, compute the residuals, that is,

¢, =B, = 4B Y,
6(B)

-

where ¢(B) =(1-§,B ...~ B” Jand (B) =(-6,B-..-8,B). Let
a2 =l 2
&’ nget

be the initial estimate of o2.

Step 2

Calculate il’, and 7:2’( fort=1,2,..., n, using the estimated model. Define

A

Ay =maxifl, |5,

fort=1,2,...,n where T denotes the time when the maximum occurs. If
?:T = ,il,Tl> C, where C is a predetermined positive constant, then there is the
possibility of an AO at time T with its effect estimated by ®, in Equation (2.7.6).

The effect of AO can be removed by defining new residuals

~ A A A T
€ =€, — An(B)P,()
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fort>T.

If 1 =|22,T| > C, then there is the possibility of an IO at time T. The impact

of 10 is estimated by @, in Equation (2.7.8). Then, the effect can be eliminated by
defining a new residual
er =€ —0; =0
at time T.
In practice, Chang et. al. (1988) recommended using C = 3 for high
sensitivity, C = 3.5 for median sensitivity and C = 4 for low sensitivity in the outlier

detecting procedure when the length of the series is less than 200.

In either of preceding cases, a new estimate . is computed from modified

residuals.

Step 3
If an IO or an AO is identified in Step 2, recompute X,,T and 712; based on
the same initial estimates of time series parameters, but using the modified residuals

€'s and the estimate G2, and repeat Step 2.

Step 4
Continue to repeat Steps 2 and 3 until no further outliers can be identified.

Step 5
Suppose that Step 4 terminated and k outliers have been tentatively identified
at times T, Ty, . . . , and Ty. Treat these time points as known and estimate the outlier

parameters simultaneously using general outlier model of the form

Y, —im V.(B)PY L8 (2.7.11)
=R 1(:) R o
which is equivalent to Equation (2.2.10) where ViB) = 1 for an AO and

Vj(B)=@ for an IO at time T;.
¢(B)
Treating Equation (2.7.11) as the suggested model, we start the outlier
detection stage again. If no other outliers are found, we stop. Otherwise, the
estimation stage is repeated, with the newly identified outliers incorporated into the

model (2.7.11), until no more outliers can be found and all of the outlier effects have
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been simultaneously estimated with the time series parameters. Thus, we have the

following fitted outlier model:

a

k., 1y O(B)
Y, =) &,V,BP" +——a, (2.7.12)
JZ:I: ¢(B)

where &, $(B) =(1-$(B)—...—$,B") and 6(B) =(1-6,B~...—8,B? ) are obtained

in the final iteration.

2.8 Informal Procedure

The informal procedures of outlier detection in time series which are available
in literature include, Influence Function Method, Q Statistics, Leave-k-out
Diagnostics and Likelihood Displacement. Chernick, Downing and Pike (1982)
suggested the method of detecting outliers by examining the influence function matrix
of the estimated autocorrelations. Abraham and Chuang (1989) considered the Q
Statistics used in regression analysis for detection of outliers in time series. Bruce and
Martin (1989) also proposed the leave k-out diagnostics as an informal procedure.
Ledolter (1990) also considered the likelihood displacement measure for the model
perturbation in the case of time series observation. Soe Win (2004) proposed
adjustment diagnostic measures based on error variance (ADV) and developed
Statistical Time Series Diagnostic Software (STDS) for the detectipn of outliers in

time series.

2. 8.1 Influence Function Method

Influence is a concept that has direct applications to the study of outliers.
Influential observations are also potential outliers, so detecting them is a natural
complement to the detection of outliers. It should be noted that not all outliers are
influential, and similarly, not all influential observations are outliers. Furthermore,
influence measures can perhaps help outlier detection with the problems caused by
masking and smearing.

Chernick, Downing and Pike (1982) investigated the effect of outliers on time
series data by considering the influence function for the autocorrelation of a stationary
time series. They defined an influence function matrix for the autocorrelations and

showed how it can be used as a graphical tool for detecting outliers. They also accept
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been simultaneously estimated with the time series parameters. Thus, we have the

following fitted outlier model:
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= ¢(B)
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2. 8.1 Influence Function Method

Influence is a concept that has direct applications to the study of outliers.
Influential observations are also potential outliers, so detecting them is a natural
complement to the detection of outliers. It should be noted that not all outliers are
influential, and similarly, not all influential observations are outliers. Furthermore,
influence measures can perhaps help outlier detection with the problems caused by
masking and smearing.

Chernick, Downing and Pike (1982) investigated the effect of outliers on time
series data by considering the influence function for the autocorrelation of a stationary
time series. They defined an influence function matrix for the autocorrelations and

showed how it can be used as a graphical tool for detecting outliers. They also accept
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that the influence function for bivariate correlation can be a useful tool for detecting
outliers.

The popular Box and Jenkins approach of time series model building includes
four stages: model identification, parameter estimation, diagnostic checking and
forecasting. The model identification part relies heavily on the behavior of the sample
autocorrelation function. Since individual outliers can have dramatic effects on
several correlations, this may have implications on the identification phase of Box and
Jenkins method when errors are suspected in the series. In such cases, the influence
function matrix for the data set may be computed before starting the Box and Jenkins
method.

An influence function for an estimate is the result of an infinitesimal change in
the weight given to an observation in the theoretical distribution function. The
influence function for an estimate depends on the parameters being estimated; the
observation vector whose influence is being measured and the distribution function of
that observed vector. The parameter can be considered as a functional of the
distribution function F and is commonly written T(F). Often the estimator under
consideration can be expressed as T(Fp,), where Fp, is the empiric distribution function
that is, Fy(y) is the fraction of the m sample vectors x whose coordinates are all less
than or equal to the coordinates of y. The influence function defined by Hampel
(1974) is given by _

I(F, T(F), x) = 15213 {T(l-e)F+edx)-T(F)} /¢ (2.8.1)

when the limit on the right side exists. In Equation (2.8.1), x is the point of interest in
the observation space, € is a positive real number, and 8x is the distribution function
that has all its probability mass concentrated at the point x. An influence function
therefore measures the effect of a small change or perturbation of the data distribution
on the value of a statistic or an estimate of interest.

Let px denote the autocorrelation at lag k for a stationary time
series X, t=1,2,...,0. Let p=E(X;) and o’ = V(Xy). It is convenient to let
Y= (X:-p)/ofor each t. This transformation from X; to Y, does nof affect
px and therefore I(F, px x) = I(H, Pk, ¥), where H is the distribution for (Y, Ye).
Then ' ‘ |

I,y (2,20 ) =ZZyy —p(ZF +22,)12 (2.8.2)
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where H is a bivariate distribution function with mean zero, unit variance and
covariance pg.

The influence of any pair of observations k units apart on the estimate of py
can be computed based on the Equation (2.8.2). When py, ¢ and p are not known,
estimates can be used to calculate the influence function.

An n x m matrix, where n is the number of observations and m is a fixed
number of lags (m < n) has its (j, k) entry given by I(H, px, (¥j, yj+«)) where y; is the b
standardized observation. The observation y; influences several lagged autocorrelation
estimates. It appears in the computation of every element in the t* row and also in the
diagonal elements of the preceding rows beginning in column 1 of row t-1 and
proceeding up and to the right. An outlier will often have a very large positive or
negative influence on each estimate of correlation. Hence, if all the elements in the "
row and the above diagonal are large in absolute value, this will indicate that the t*
observation is probably an outlier. This "clothes-pin" pattern in the matrix directs

one's attention to the suspect observation.

Define
U, = {(yi +Yoae) , O _Yi+k)}/2 2.83)
N Vi+p  l-py .
and
Usa = { (i +¥in) i —Viu )} 3 —_—
Vi+pe  yl-py
It is easy to see' that
(-p2 ik Ui =y —pe 52 +¥20/2 (285
and so
IH, i (¥ ¥ i ) = (1= p2 U1 1 Uik (2.8.6)

For a stationary Gaussian process with p, o and px all known, U;,, and
U,.. are observations from independent standard normal distributions. The quantity

I(H, px, (¥ Yi+x)) then has the distribution of a constant times a product of standard
normal random variables. This distribution can be used to determine what values for
the influence function would be unusually large for a realization from a stationary

Gaussian process.
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To clearly see the patterns in the influence function matrix, Chernick et. al
(1982) proposed choosing a critical value of 1.0 based on the product standard normal
distribution. Influence function estimates exceeding this critical value in absolute
value are designated + or — depending on the sign of the estimate. Other observations
are left blank. The matrix will then appear .with patterns of + s and — s and the clothes-
pin effect should be evident to the eye. While Chernick et al. did not expect that the
stationary and Gaussian assumptions hold in all applications, they believed that this

approach provides a method for revealing outliers in a wide variety of situations.

2. 8.2 Q Statistics

Abraham and Chuang (1989) considered some statistics used in regression
analysis for detection of outliers in time series. This method was proposed for
distinguishing an AO from an IO. A four-step procedure for modelihg time series in

the presence of outliers was also proposed.

Some Diagnostic Checking Measures

Let Z, be a stationary AR (p) process given by

¢@B) Z, = a, (2.8.7)
where ¢(B) is defined as before . Given a set of observations z, z, . .., z,. We can
write

Z=X$+a (2.8.8)

whereZ'=(zp+|,...,Z,,),¢'=(¢1(,...,¢p),a'=(ap+1,..,,an)and

Zp Zp—l z,

Zpa  Zy Z

X = g i
_Zn—l Zn—2 Zn—p 4

Then the conditional least squares (CLS) estimate of ¢ is given by

o =XX)'XZ, (2.8.9)
the fitted values are

Z=X¢=XXX)"'X'Z=HZ (2.8.10)
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where H = X(X'X)"! X' and the residuals are e = (I - H)Z . In a linear regréssion
model, X is assumed to be a constant matrix and the Z; s are assumed independent. An
observation could be deleted without affecting the consecutive ones and the deletion
of an equation in (2.8.8) is equivalent to the deletion of an observation. However, in
time series context, a suspected observation Z; is involved not only in one equation
but in p+1 consecutive equations of (2.8.8). Thus, it may be necessary to delete not
only one equation but p+1 equations from (2.8.8).

Suppose that there is one suspected observation at t = T. The matrix X, vectors

Z and e can be partitioned as follows:

X, | (T-p)xp Z, | (T-p)x1 e | (T-p)x1
X=X, kxp =127, kx1 e=|e, kx1
X5 |(n-T-k)xp Z;|(n-T-k)x1 e; |[(n—-T-k)xl

where k is the number of equation that are to be deleted. The residuals e can be
expressed in the partitioned form as

I-H,, -H, -Hj;|Z
- H3l - H32 I- H33 Z3

where | H; = X; (X'X)X] ,i,j=1,2,3 (2.8.12)
Consider the statistics |

Quy=¢2(I-Hn)" e (2.8.13)

and APy = (1-Qip/ RSS) [I-Ho,| (2.8.14)

where RSS is the residual sum of squares. When k=1, e>= er and when

k= pt+l, e2=(er,...,erp). Now Q) could be decomposed into two terms:

Quy = €262+ (¢-¢ ) (X' X+ X3Xa)( §-9)
= Que+ Qo (2.8.15)

where ¢ = (XX + X3X3) ! (X'1Z) + X'3Z;) is the estimate of ¢ after deleting k
equations from (2.8.8). Note here that Q) and Cook's statistic with k observations
deleted
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Cin=¢>2 (I - Hp) ' Hyy (1-Hn) ' e,/ (p6 2y (2.8.16)

are related as follows:

1

A2 k()

po < (2.8.17)
1"}‘1 Qk2(t) ‘1—)\,‘(

where 62=RSS/ (n-p-1)and A and A are the smallest and the largest eigenvalues

of H,, . The statistics Qx, Qx; and Qy, are useful indicators for outliers detection.

Patterns of the Q Statistics

The statistics defined in Equations (2.8.13) and (2.8.15) are functions of
e'sand hjj [i,j =t, ..., (t+k-1)]. Their behaviour is different for AO and IO outliers.
They may be used not only to detect an outlier but also distinguish an AO from an IO.

A suspected AO outlier at t= T will affect Z7 by & and consequently, er+;
by ¢i6(i=0,1,...,p; $0=1). An IO outlier with affect ey by 0 and hence
Zt+ by yid (i=0,1,...), where y; is the coefficient of B' in v(B)=0¢"'B)=
1-yiB-yB2. .. (yo=0).

For illustration of the patterns, consider an AR(1) process. Suppose that k=1;
then

n
Hp=hrr=23,/>.2¢,,
- t=2

Qm=e;(1-23,/).22,)" =e;(1-hy)7,

pae
2
Q) =€7 and

QIZ(T) = eizi—l /ZZ?—I = e%[hn (1-hy)].

t=T

Q,, depends only on ey, whereas Q; and Q)2 depend on er and hrt, however,

hrr is relatively small compared with 1 and the behavior of Q; is dominated by er.

Now hrr /(1-hr7) is a monotone function of hrr, thus the behavior of Q2 depends on
eiZ%_l.
If the outlier at t = T is an AO, then er and er+; are affected, and hence

Quicry> Quicrsry @and Qyrys Qi1 are large compared with the rest. Although Q,yq,
and Q1. are influenced by the outlier at t =T, then the latter is the larger because

e;,, and Z; are affected by the outlier.
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If the outlier is IO, then only e; is affected, which implies that Q,,and
Q1) are large compared with others. The behavior of Qy,, is less reliable, since

observations zr,...,z, are all affected.
The patterns of these statistics for higher order (p > 1) processes are similar

and are summarized in Table (2.1). In general, it is indicated that Q, ( or Q,,) is

more useful in detecting outliers than Q,,.

Table (2.1)
Patterns of Q statistics Assuming an Outlier at t=T
Statistics 10 outlier AO outlier

Q11, Qi deleting one | Large value at t =T and small | The valuesatt=T, T+1, .. .,
equation (k=1) values elsewhere. T+p are affected.

Qi2, deleting one The values at t =T, T+1, . . . | The values at =T, T+1, .. .,
equation (k=1) are affected (less reliable). T+p are affected.
Qp+11,Qp+1) » Large values at t =T-p, T-p+1,| The values at t = T-p, T-p+1,
deletion p+1 ..., I, and small values . .., I'tp are affected, with
equations (k=p+1) | elsewhere. the largest value at t =T.
Qp+iy2 deleting The values at t =T-p, . . ., T, ..| The values at t = T-p, T-p+1,
pt+1 equations are affected (less reliable). . .., T+p are affected, with
(k=p+1) the largest value at t =T.

Approximations

In practice, the identity of the outlier may not be known. Hence the values of

Qxy» Quiqy and Q,5(y have to be computed for allt=p+1, p+2,.. ., (n-k+l) and

this requires (n-k-p+1) inversions of the matrix (I-Hy2), which may invite numerical
problems. Recursive computational procedures to avoid this inversion can be time-
consuming and may result in large rounding errors. If off-diagonal elements, -h;j of
(I-H,,) are small in absolute value, the following approximation, in which no matrix

inversion is performed, can be made:

t+k-1

Qu ~ D.e; /(1-hy) (2.8.18)
i=t
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This approximation is usually adequate in large samples. Once Q. is

obtained, Q,,, can be obtained by subtracting le(t)=e'2e2 from Q. These

approximations are also attractive because the exact forms require the computation
and the storage of the symmetric band matrix H (that is, h,, ,,...,h,, forallt),
whereas the approximations require there only for the diagonal elements of H. Note
that when k=1 (deleting one equation) the exact values and the approximations are the

same.

Model Building Procedure
Abraham and Chuang (1989) proposed the following model building

procedure, based on the Q statistics.

Step 1
Use any model selection technique to identify a tentative order (p', q'), which

may not be the true order (p, q). Choose a p‘ >p'+q.

Step 2

Outlier Detection: Estimate (p' by CLS method and compute of Qy (and/ or
Qe )fork=1and k = p +1. Determine the outlier and its type based on the plots of
Qx (and / or Qx1, Q2 ). The significance tests based on the maximum of these statistics

may also be used. Go to Step 4 if there are no outliers; otherwise continue to Step 3.

Step 3
Cleaning the series: Let T be the position of the outlier identified in Step 2. If

the outlier type is AO, then delete equations (T-p) to T from Equation (2.8.10) to

obtain the estimate, ¢ *. We now adjust the T™ observation, using the predictive mean

of Zr conditional on all other observations, E(Zt/ Z;,t# T ) ; that is , replace Z;by

zt =Z[ ,t?&T
p‘
=Y R;Z,; +Z,,;) =T (2.8.19)
il

% R B R p. % - *
where ;= (4] - 278141 )/1+X8:), G=1,2,...,p") (Abraham and Box,
t=1

1979). If the outlier is 10, delete the T™ equation from (2.8.10) to estimate ¢  and

adjust the observations as follows:
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~

Z=Z Lt<T
=7, —¢€, ,t=T
=Z,~ W16 ,t>T (2.8.20)

where &; is the residual corresponding to the estimate ¢ and ; is the coefficient of
B'in 1-{;B-{;B’ —...=(1-$;B—...—¢;B" )"

With the cleaned series, we go to Step 2 and repeat Steps 2 to 3 until no

further outlier are found.

Step 4
Specification: Use the cleaned series in the last iteration to specify a tentative
model. This model is then estimated using maximum likelihood and the tentative

strategy of model building discussed by Box and Jenkins (1976) is adopted.

2.8.3 Leave-k-out Diagnostics

Bruce and Martin (1989) proposed "leave-k-out diagnostics" for the effects of
outliers in time series. Leave-k-out refers to deleting k consecutive observations from
the series, treating them as missing and replacing them with their predicted values,
using again an appropriate method for handling missing values in an ARIMA model.
The effects of this perturbation for ARIMA model parameters (Diagnostics for
Coefficient) and for the error variance (Diagnostics for the Innovation Variance) are

then taken as diagnostic tests for the presence of outliers in an estimated model.

Diagnostics for Coefficient (DC)
Let a be the r x 1 vector of parameters in ARIMA model and denote the MLE
ofa by a.Let A= {t;, s, ..., t} be an arbitrary subset of {1,2,...,n} and let &,

denote the MLE with observations Yt » Ye,»- -5 Vi, treated as missing. If some of

the observations in A have an undue influence on the estimate G , , then this will often
reveal itself in the form of a substantial difference between & and @, .
Bruce and Martin (1989) took their leave-k-out diagnostics for coefficients as
DC (A) = n&—é, ) I@)G-6,) 2.821)

where I(&) =C” (& ) and C(& ) is the covariance matrix of &.
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A rough guide is to judge a subset A of points to be influential if the 'p' value
of DC (A) based on the x} reference distribution is smaller than 0.5 (Cook and

Weisberg; 1982). This guideline is not a significant test and marely serves as a

general purpose indication of influence.

Diagnostics for the Innovation Variance (DV)

The influence of a subset A can also be measured by evaluating the effect of
its removal on the MLE of the innovation variance®. Let 63 be the MLE of o’
with observations at times t € A treated as missing. The diagnostic is formed in the
same manner as earlier.

Thus, Bruce and Martin (1989) proposed to use leave-k-out diagnostic for

innovation variance

n( 6?

DV(A) = 5(72— -1) (2.8.22)

GA
with the reference distribution being a chi-squared distribution with one degree of
freedom. Again, a subset A of observations to be influential if the 'p' value for DV(A)

is less than 0.5 using a ; distribution.

Diagnostics for Patches

For independent observations, computational considerations usually result in
deletion of a single observation at a time. However, the time series situation differs

from the case of independent observations in at least two important ways:
) structure is imposed by time ordering and

(i)  influential observations often come in the form of an outlier patch or other

local structural change extending over several observations.

Leave-one-out diagnostics can fail to give clear evidence of influence in the
case of patchy disturbances such as outliers. Such behaviour might be regarded as a
form of masking since the effect of any single outlier in such a patch can be
overwhelmed by the effect of the other outliers. This kind of situation is easin dealt

with in time series by leaving out k consecutive observations.
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Superiority of DV over DC

In the regression case, the error variance is a nuisance prameter and therefore
has less intuitive appeal as the basis for a diagnostic. However, in time series models,
the inovations variance plays a fundamental role and it is the parameter of interest as
well as DV has properties than DC.

The major difference between leave-k-out coefficients DC for time series
(including k=1) and the usual regression coefficients diagnostics for independent data
is a smearing of the effect of an isolated outlier of patch of outliers to adjacent points.
A given point may be judged influential using the diagnostics for the coefficients
because of an outlier at an adjacent point. For example, in the AR (p) case, an isolated
outlier can result in significant values for DC at “p” times before and after the
occurance of the outlier. Hence, interpretation of leave-k-out diagnostics for DC is not
so clear as in the usual regression case. In contrast, diagnostics for the innovations

variance display much smaller, and often negligible, smearing effects.

Overall Strategy

Bruce and Martin (1989) presented an overall strategy for ARIMA model
fitting using leave-k-out diagnostics. The diagnostics are used in a simple recipe to
determine the length of a patch of influential points. This strategy is embedded in an
iterative deletion procedure, which often overcomes problems caused by masking.
Since in some cases the iterative deletion procedure fails, more flexible subset

deletion techniques are introduced.

Iterative Deletion Strategy

The masking of influential points (e.g. outliers) by other influential points is a
problem encountered in all types of diagnostics. Masking caused by a single patch of
outliers can be handled adequately by leave-k-out diagnostics. More subtle types of
masking occur when moderate outliers occur close to one another. These types of
masking can often be effectively uncovered by an iterative deletion process which
consists of removing suspected outliers from the data and recomputing the
diagnostics.

To deal with problems caused by masking, Bruce and Martin (1989) built on
the initial patch determination strategy as follows.
(a) Run leave-k-out diagnostics on the data, for k = 1, 2, . . . , until either the

length of the most influential (significant) patch is determined using the
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guideline of k = Kz Where Ky is determined by the user. In principle, Kyay
is the length of the longest patch of outliers present in the data. For n < 250,
setting Kimax = 5 will often reveal most if not all problems with the data. The
second case can result from two possibilities: either no influential observations
were detected or the length of an influential patch is ill determined. The latter
case may be due to a patch of length greater than Kmax, or perhaps the patch
length simply cannot be determined from the data. In this case, the most
influential patch is determined as that corresponding to the most signiﬁcant
diagnostic.

(b) If no influential points are found, then conclude the analysis. If influential
points are found, then delete the most influential points as identified in step (a)
and go back to step (a). The new leave-k-out coefficients should be scaled
according to the MLE computed with the outliers removed in order to gauge

additional influence of the remaining points.

Model Identification and Residual Analysis

In practice, the model must be determined by some criteria such as the Box-
Jenkins identification procedure. However, outliers may cause improper model
specification. To handle order selection in the presence of outliers, we can embed the
iterative deletion strategy in an iterative procedure. The initial model order is selected
and the iterative deletion strategy is performed on the initial model. After removmg
all influential points, the model is identified again. If the same model is selected, then
the analysis is concluded. Otherwise, iterative deletion is performed again, and the
cycle is repeated until the same model is identified in successive rounds. While this
procedure is usually adequate, it may fail in some situations where a poor initial
model is selected. If the wrong model is identified, then removal of the influential
points under that model may lead to selection of the same model.

In the presence of outliers, the usual prediction residuals are often misleading
for identifying the influential observations. Instead, Bruce and Martin (1989)
recommended the examinationrof the residuals based on the predictions formed when
the observations identified as influential are treated as missing. Since the predictions
are not distorted by influential observations, this procedure reveals ‘outliers more

clearly.
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After selecting the model, a careful analysis of the influential data points
should be carried out. One may be able to categorize influential points as isolated or
patches of outliers, or perhaps associate them with a level shift or variance change.

Points diagnosed as outliers can be further classified by type (AO versus 10).
A formal way of determining whether an outlier identified by DV is AO or IO is by
Fox's (1972) test. A less formal way of determining whether an outlier is AO or IO is
to examine a lag-1 scatter plot of the residuals. Martin and Zeh (1977) pointed out that
IOs tend to fall near the abscissa and ordinate of such a plot, whereas AOs tend to
appear away from the abscissa and ordinate, assuming that robust parameter estimates

have been used to form the residuals.

2.8.4 Likelihood Displacement Measures

Cook (1986, 1987) introduced a general measure of model perturbation on
parameter estimates using contours of log likelihood function. For any model M with
paranieter vector A, let L(A) be the log likelihood function and A is the maximum

likelihood estimator of A. Suppose we have a perturbation model M (®) and let L,(A)

and 7:0, be the log likelihood function of the perturbation model and the associated

maximum likelihood estimator respectively. Thus we have two estimators A and im

corresponding to the basic model and perturbation model respectively. The likelihood
displacement or likelihood distance LD, (A) proposed by Cook is
LDo(A) =2[L (A)-L (i,)] (2.8.23)

which measures the changes in the log likelihood function due to the influence of
perturbation on the parametef estimates. The likelihood displacement provides a
theoretical foundation for a general measure to assess the influence of perturbation on
the estimates of model parameters.

Cook also proposed modification of likelihood displacement in situation

where a subset of parameters is of interest. In particular, let A; be the parameter of
interest when A = (L, A2')' and let A, =(i},,A},)". Further, let i,(A) be the
maximum likelihood estimator of A, obtained on maximizing L(A;, A;) When A s
fixed. Hence

L(Ayy.hy (Ry,)) = max L(Ayg.2y)
s
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and the proposed likelihood displacement for A, is
LDg(Ar) =2 [L (&) - LA, R (Ry)] (2.8.24)

The likelihood displacement measure is often used in regression
diagnostics (Cook and Weisberg, 1982). In the regression setup, the ~model
considered is Y nx1 =X axk @kx1+€nx1and the model perturbation is the deletion
of i™ observation. Cook and Weisberg also established that in the case of regression
model where the parameter © is of interest, the likelihood displacement is a
monotone function of Cook’s D statistic.

In case of time series observation, the likelihood displacement diagnostics
measure was derived by Ledolter (1990) where a stationary and invertible
ARMA(p, q) model

$(B) Z; = 6(B)a,
was considered. The model perturbation considered by Ledolter is the deletion of i™
observation following deletion diagnostics proposed by Peiia (1987) and Bruce and
Martin (1989). The deleted observation is treated as an unknown parameter and its
estimate is substituted in the observed series to estimate the parameters of interest. For
given time series coefficients B = (¢', 8')',the estimate of deleted observation used by

Ledolter is

- P; VAT VAR)
1

=
where pj' is the lag j inverse autocorrelation of the process. This estimate is a
weighted sum of adjacent observations, which is the Brubacher and Wilsom (1976)
estimator.

When the time series parameter  and error variance 032 are both of interest,

the aim is to obtain the likelihood displacement in Equation (2.8.23), which reduces to
LD;(B,02)=2 [L(B,67)-LBg).6%:)] (2.8.25)

where L(B,62) o —-gln(c"rz) ——gand L(ﬁ(i),&i(i)) is obtained on substituting the

maximum likelihood estimates under the perturbation model 3@) and &2, in the log

likelihood function

L@,02) —-g—ln(c:)— 2(172 Ss() (2.8.26)
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where f is a set of parameters (¢',9’)’,c: is the error variance and SS(B) = Zaf-,
: t=1

Then, the maximum likelihood estimate [3 can be obtained by minimizing the

conditional sum of squares function SS(B) and the maximum likelihood estimate of

error variance is given by

o? = ~sS(P)
n

where SS(B) = tz:l:[fr(B)Z(]z and #(B) = gﬁg;

Thus, Equation (2.8.26) gives

L
0K e(:) Oe(i) 262

e(i)

| e a3 - . )
where  SZ;, =—SS(B;)is an additional estimate of error variance and
n

SS(ﬁm) = Z:[‘fti (B)Z,]2 , which is based on the original observed series without any

t=1

adjustment of any observation, and using ﬁ(i) .

Therefore, the measure of interest LDi( ,0'3 ) in Equation (2.8.25) reduces to

5 . S
btk -5-{- 3t 52

) SZ
_ Ce | Peli).
=-nln T +n 2 —-11.
c(x) e(l)

In order to obtain likelihood displacement for the error variance o of interest,

the modified likelihood displécement introduced in Equation (2.8.24) with A, =c’

reduces to
LD, (o2)=2 [ LB,62)-L[3.5%,) 1
where L(ﬁ,&i)oc —%ln 63)—% and L’(ﬁ,&i(i)) is obtained on substituting the

estimates § and G2, in Equation (2.8.26). The substitution gives
A2

né
~2 e
L(B Uo(s)) e(n)) 262
(i)

. Oo@éo‘gd

.
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Thus, the measure of interest can be simplified to

LD, (02)=2 [ L(B,62)-L[3.6%;) 1

a2 ~2
=-n m{ = ]+n|: = -1} (28.27)
, Oei Cei)

As expected, the expression for the likelihood displacement is same as that
derived by Ledolter (1990), except for the difference in the estimates, which in this
case is based on adjusted series. Ledolter showed that this likelihood displacement is

equivalent to the deletion diagnostic based on error variance (DV) developed by

) 2

Bruce and Martin (1989). For x = f} —1, using the identity In(l+x)~ x——%— , it

Oei)

was shown that Equation (2.8.27) can be approximately expressed as

' 2
~2 ) A2

LD, (02)~ —n| {2 -1 - e 1} |+n[ o1
Oe(i) 2 Oei) Cei)

2
a2
zf‘z{j _1] =DV, (2.8.28)
(o) .

It is clear from the derivations that the diagnostics based on likelihood
displacement will agree with the diagnostics proposed by Letdolter based on deletion.
Further, since the series adjustment in the presence of AO is equivalent to deletion
diagnostic, the procedures will coincide when the adjustment is carried out for AO
type of outliers.

If the parameter § is only of interest, the likelihood displacement in this case

reduces to

LD;(B)=2 [ L(ﬁ,ﬁﬁ )“ L(ﬁ(i),sﬁ(;)) ] (2.8.29)
where L(ﬁ,&i) is as before and L(ﬁ(i),Siﬁ)) is given by substituting the estimates ﬁ(i)
and S, in Equation (2.8.26), which reduces to

L(é(i)’szm) o= 521‘111(550) )’% :
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Hence, we get

3

LD, 0) =2 {-S1ae)- 2} {2z, )-

62
=-nln| =*|.
Se(i)

Since the estimate of error variance is more sensitive than the estimates of the

time series parameters in the presence of outliers (Bruce and Martin; 1989,

Ledolter; 1989, 1990), we return to the likelihood displacement diagnostics for the
error variance 6., given by Equation (2.8.27). Based on Equations (2.8.27) and

(2.8.28) and following Ledolter (1990), Soe Win (2004) considered the quantity

G’ . . . o 5
n[———1|as the diagnostic measure based on error variance for outliers in time
Lo PP

e(i)

series. The displacement is equal to n times the influence on scale D, (i) proposed by

Pefia (1987). Soe Win (2004) introduced adjustment diagnostic measure based on
error variance for both AO and IO types of outliers.

2

~2
Let ADVg, =n| —=—-1 (2.8.30)
Oe(i).s

where S is either AO or 10, 67 is the estimated error variance based on the observed
series, and 620),5 is the estimated error variance based on adjusted series with

adjustment position i, by outlier type AO or I0.

The two measures introduced in Equation (2.8.30) can be used for obtaining
diagnostic plots. The possible position of outliers will be denoted by the large values
of ADVs;;.

Hence, for diagnosing the presence of an AO or an IO type of outlier,
respectively, in the observed series at an unknown position, Soe Win (2004)

proposed the criteria

Al
Q,0 = maxADV,,; = max nl: T 1} for AO

~2
G ¢(i),A0

=ADVaor and
~2

Q,, = maxADV,,; = max n[ e l] for 10

~2
Cei)i0

- ADV]O,T (2.8.3 1)
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The position of the outlier is given by the time point T at which the statistic
achieves the maximum, if the computed statistic is significantly large.

However, the type of outlier present in a time series is rarely known. The
series adjustment at correct adjustment position by correct type is likely to yield the
smallest estimate of error variance, which will result in the large value of the derived
diagnostic measure. Thus, Soe Win (2004) proposed likelihood displacement based
criteria |

Q" = max { miax ADVyo, , miax ADVo}
=max (Qa0, Cdo) (2.8.32)

For a given set of observations, Q" is compared with a predetermined positive

constant C.

FQ =Quo = ADV o1 > C then an AO type of outlier at time point T is

identified.

IfQ = Q0 = ADVp, 1> C and IO type of outlier at time point T is identified.

He refered to the proposed procedure based on Q" by Adjustment Diagnostic
based on Variance estimate (ADV).

Notice that the procedure based on Q, is same as that proposed by Ledolter
(1990). In order to obtain the cut—off point C, he refered to the discussion by Ledolter
(1990).

Ledolter (1990) suggested that rather than comparing with an upper percentile
of the reference distribution, a warning value can be considered. For instance, for
AR (1) of length 100, a warning value of 14.5 seems suitable as a 95% percentile. The
warning value can be used to indicate a particular observation which needs to be
scrutinized.

Soe Win (2004) adopted the suggestion of Ledolter to use warning line or
warning limit based on the ADV plots and suggest plotting ADV plots for both
ADV4; and ADVj; to get on initial idea about the type and the level of contamination
of the given series. He presented the Statistical Time Series Diagnostics Software

(STDS) along has the ADV plot as one of the menus.
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Diagnostic for Multiple Outliers
In practice, the number of outliers which might be present in an observed time
series is rarely known and a procedure which detects the presence of multiple outliers
is needed. Identification of multiple outliers is a challenging problem, particularly due
to the masking and swamping effects (Barnett and Lewis, 1994). In many practical
situations, however, most of the jointly influential observations are detected by
employing the single case diagnostic procedures (Chatterjee and Hadi, 1988). In time
series, most of the existing multiple outliers detection procedures are used to detect
single outlier procedure iteratively (Chang and Tiao, 1988: Chang et al. 1988)
The iterative procedure based on ADV for identification of multiple outliers is
as follows.
Step 1
Compute the maximum likelihood estimates of the model parameters ¢, 6 and
error variance based on the observed series where it is assumed to be outlier free.
Hence, the estimates are
B (43 6)' an
Z

The y weights and nt welghts are recursively computed as,
\I’J’:&;l@j—l—$2¢j—2_"‘_$p¢j—p_éj f(?rj>0
where i, =1,{; =0 forj<0,and 6, =0 forj>q, and
ftj=él1“tj_l+ézﬁj_2+...+éq1‘rj_q+$j forj>0

where @, =-1,7; =0for j <0, and (Bj =0 for j > p respectively.

Step 2
Fori=1,2,...,nin turn, calculate the estimated outlier parameters at ',
R n(F)e,
(DAOJ = l >
A2
2 R
=0
Do =€,

and adjust the series for all t by using the estimated observations given by

— (1)
Yiiya0 = Y1 — O)AOlPt

Yt(i),io = Yt - &Io,i‘?f(B)P z(i)'
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Compute the adjustment diagnostic measure,

~2
O eii)s

~2
ADVg; = r{ s 1) for S=AO and IO

o 1&. . ; " s .
where 62,5 = ;Zefm,s is obtained based on adjusted series Yy), s, S is AO or 10, and
: t=1

€ i the residual using the estimated parameters ﬁ(i)’s = (&m's,é @) for the adjusted

series Yy, s-

Step 3
Define Q" = max (ADVao1, ADVo, 1) where ADV Ao = max ADVjo, i and

ADVio1 = max ADVig, i, T is the time point where the maximum occurs. If Q< C,

go to Step 4.

If Q" = ADVao, 1 > C, where C is the predefined positive value, then there is
an AO at time T with its effect &,q. Take the adjusted series with observation Y;
replaced by Yy, a0 for all t, and go to Step 1.

IfQ = ADVjg 1 > C, then there is an IO at time T with its effect O - Take

the adjusted series with observation Y, replaced by Yym), 10 for all t, and go to Step 1.

Step 4
Suppose 'm' number of outliers are identified with the positions Tj, for
j=1,2,...,m. The model is modified to

o®),

t 2833
*(B) e

m
Y, =D o, V;BP" +
[=]

where Vi(B) = 1 for AO type and V{(B) = % for 10 type at t = T;. The

simultaneous estimation is carried out to get the final estimates for a set of parameters
B = (', ¢, 0") where ®' = (01, ®, . . . , ®m) and error variance o’ using the maximum
likelihood estimation procedure.

The multiple outliers in time series can occur in isolation or in patch which are
called as isolated outliers or patch outliers respectively (Marin, 1979; Bruce and

Martin, 1989). This procedure can work satisfactorily for isolated outliers.
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2.9  Advantages and Disadvantages of Qutliers Detection Methods

The idea of using likelihood ratio test to detect outliers in time series was
originally proposed by Fox (1972). It was later developed by Muirhead (1986),
Chang, Tiao and Chen (1988) and Tsay (1986 and 1988). It has become almost a
standard method for detecting outliers in time series. It is already featured in some
computer software packages (for example, SPSS) and easy to understand as well as
seem to work reasonably well in most practical situations, especially when used
iteratively (Tsay, 1988 and Chen and Liu, 1993). Furthermore, this method can
classify the types of outliers.

Chernick, Downing and Pike (1982) presented an alternative method for
outlier detection based on influence functions for the autocorrelation function in time
series data. The influence measures can perhaps help outlier detection with the
problem caused by masking and smearing but this method cannot separate the type of
the detected outliers in a time series.

Q Statistics for detection of outlier was also proposed by Abraham and
Chuang (1989) and they investigated the effect of deletion of k observations on Q
Statistics. These Q Statistics are used to detect outliers in linear model data and they
are transferred to the time series context. This is an alternative procedure which can
identify and distinguish an AO outlier from an IO outlier. The pattern of Q Statistics
is valid even when the moels are overfitted. The strategy is sirhple and intuitively
appealing and it seems to work reasonably well in a number of examples. It can easily
be made a routine part of exi'sting time series software. But the computation of Q
Statistics require a number of inversions of the matrix, which may result numerical
problems, can be time consuming and may invite rounding errors. Therefore, the
approximations in computing Q Statistics are used and these approximations are
usually adequate in large sample, and are also attractive because approximations do
not require a lot of computations and storage of the matrices.

A leave-k-out diagnostics approach to detect outliers in time series was
proposed by Bruce and Martin (1989). Leave-k-out refers to deleting k consecutive
observations from the series, treating them as missing and replacing them with their
predicted values, using again an appropriate method for handling missing values in an
ARIMA model. It seems that these diagnostics are the most effective with increasing
numbers of deleted and treated as missing. In this way, they can be effectively used to

determine the patch length, that is, the number of consecutive observations considered
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as outliers. This may be a good way to overcome some of the problems caused by
maskihg and smearing. Some problems remain partiéﬁlarly when a single outlier and
a patch of outlier lie close to each other. These can possibly be solved by deleting the
observations first identified as outliers and then calculating a nevs} set of diagnostics
for the remaining observations, and so on, until no outliers are found. Another minor
problem is in presenting the results of leave-k-out diagnostics. Bruce and Martin drew
bar plots of their statistics for the whole series for increasing values of k and this may
result in a large number of graphé. Moreover, this method could not separate the type
of identified outliers.

Cook (1986, 1987) introduced a general measure of model perturbation on
parameter estimates using log likelihood function. He also proposed modification of
likelihood displacement in situation where a subset of parameters is of interest. This
likelihood displacement measure is often used in regression diagnostic (Cook and
Weisberg, 1982). The likelihood displacement diagnostics measure was derived by
Ledolter (1990) in the case of time series observations. The model perturbation
considered by Ledolter is the deletion of observation following deletion diagnostics
proposed by Bruce and Martin (1989). The method of deletion diagnostics works well
in the presence of AO but the IO poses a problem because of its dynamic nature

(Chen and Liu, 1993 and Ljung, 1993).

Soe Win (2004) proposed adjustment diagnostics measure based on error
variance (ADV) to identify the correct type of outlier and developed Statistical Time
Series Diagnostic Software (STDS) to diagnose the outliers in time series. The ADV
procedure can work well for isolated outliers but does not result satisfactorily in

handling patch outliers.



CHAPTER III

EFFECTS OF OUTLIERS IN MODEL IDENTIFICATION
AND PARAMETER ESTIMATION

3.1 Outliers Generated by Simulation

In time series analysis, the presence of an outlier and its position in the
observed time series produces the unpleasant consequences and it becomes an
important issue for the analysis of time series. Tolvi (1998) pointed out that the
presence of outliers affects the autocorrelation structure of a time series and therefore
they also bias the estimated autocorrelation function (ACF), and partial
autocorrelation function (PACF). These biases can be severe and they depend on,
besides the obvious attributes like the number, type, magnitude and position of the
outliers, also the underlying model and its autocorrelation structure. ARMA model
identification is traditionally based on the estimated autocorrelations and partial
autocorrelations, and will in the presence of outliers therefore be misleading, unless
outliers are somehow taken into account. Also, the effect of outliers causes substantial
biases in estimated parameters and it can be either major or minor effects based on the
types of outliers. Outliers have also effects on the residuals as well as error variance.
This effect has several consequences for any further analysis of the residuals.

In this chapter, the effects of two types of outliers on the analysis of AR(1),
MA(1) and ARMA(1,1) series using simulated data are separately studied. The values
of outlier parameters considered are ® =0, 1, . . ., 10 to highlight the effects of AO
and IO on the mean and variance, parameter estimates, error variances, as well as
some important statistics for the model identification such as autocorrelation function
(ACF), and partial autocorrelation function (PACF), Akaike’s Information Criterion
(AIC) and Bayesian Information Criterion (BIC).

In order to study the effect of outliers on various estimators, each of 1000
outlier free series of AR(1) with ¢ = 0.5, MA(1) with 6 =—0.3 and ARMAC(], 1) series
with ¢ =0.5 and 8=-0.3 for n=100, u=0 and o> =1 were generated using

S-PLUS Software. An AO and an IO with outlier parameter ® =0, 1,..., 10 was

introduced at t = 50 for each generated series.
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For each of the generated series, the mean and variance of each series, the

parameters of interest, namely the time series parameter ¢ for AR(1), 6 for MA(1),

both ¢ and 6 for ARMA(1,1), the error variance oi, the lag-1 autocorrelation and

partial autocorrelation functions, AIC and BIC values were estimated.

3.2  Effects on Mean and Variance

The observed series Y, with AR(1) model and a single AO type outlier at T is
given by
' Y, =P +Z, (3.2.1)
where Z, = ¢ Zy.; + a; is an outlier free series which follows the AR(1) model, o is the
outlier parameter, ¢ is the autoregressive parameter and a; is the error term with mean

'0' and variance o and PV =1 ift= T and P™ =0 otherwise. The model can be

written as
Y, =oP," +¢Z_ +a, (322)
Hence, the AO model can be represented as
Y=o+ ¢ Zyy +a ,t=T
=¢ Ze + 3 St2T (3.2.3)

Similarly, to study the effect of IO type outlier on the observed series, we

consider the IO outlier model
Y, =oyB)P" + Z, (3.2.4)
where Z, follows the AR(1) model in Equation (3.2.1), ® is the outlier parameter and
P is an indicator function as mentioned above. This model can be expressed as
Y, =oyB)P" +6¢Z,, +a, (3.2.5)
which can alternatively be written as
Yi=¢ Zei + 2 ,t<T
=Yt + ¢ Zeg +a; ,t2T 3.2.6)
where ¥; = ¢' for AR(1) model.
In order to study the effect of outliers in the AR(1) model, one particular
generated outlier free series along with the corresponding outlier contaminated series

with AO and IO outlier at t = 50 for ® = 10 are plotted and it shows how the effect of
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AO is “local’ at t = 50 whereas IO affects the observation at t = 50 and the

succeeding observations as well.
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Figure 3.1  Generated AR(1) Series with an Outlier at t =50
n=100,$=0.5,p=0, o’ =1, 0 = 10)
For a particular generated AR (1) model with n = 100, ¢ = 0.5, =0,
0'3= land ® =0, 1, ...,10, based on 1000 replications, the average of mean and

variance for outlier free series (o = 0), AO and IO series at t = 50 are obtained as
follow.
Table (3.1)

Average of Mean and Variance for AR(1) Model with an AO and an 10 at =50
(n=100, ¢ =0.5, u =0, o> =1; 1000 replications)

AO 10

Mean | Variance | Mean | Variance

0.0029 | 13094 | 0.0029 | 1.3094
0.0184 | 1.3109 | 0.0284 | 1.3148
0.0191 1.3579 | 0.0391 1.3691
0.0294 | 1.3941 0.0594 | 1.4215
0.0335 | 1.4520 | 0.0735 1.4984
0.0505 1.5571 0.1005 1.6355
0.0632 | 1.6754 | 0.1232 | 1.7874
0.0739 | 1.7935 | 0.1439 | 1.9433
0.0858 | 1.9337 | 0.1658 | 2.1319
0.0949 | 2.1079 | 0.1849 | 2.3532
0:1025 | 23129 | 0.2025 | 2.6056

BV AEWN =S 8
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In order to compare the changes in the estimates due to the presence of outlier
of either type, the relative change (RC) is also computed for each estimate, where RC
is defined as
Ay, —Ayp 8

0

Relative Change (RC) = 100

where A, is the average estimated value at @ > 0 (series with an outlier) and A, is the

average estimated value at ® = 0 (outlier free series).
The following table shows that the relative changes (RC) of each estimated

value of mean and variance for the generated AR(1) series with an AO and an IO at

t=50 for ©=0,1, ...,10,u=0, 0'3=land¢=0.5.

Table (3.2)
Relative Changes (%) for Average of Mean and Variance for AR(1) Model with

an AO and an IO at t =50 (n=100, ¢ = 0.5, p = 0, > =1; 1000 replications)

AO 10

® RC for RC for RC for RC for

Mean Variance Mean Variance
1 534.4828 0.1146 879.3103 0.4124
2 558.6207 3.7040 1248.2759 4.5593
3 913.7931 6.4686 1948.2759 8.5612
4 1055.1724 10.8905 2434.4828 14.4341
5 1641.3793 18.9171 3365.5172 24.9045
6 2079.3103 27.9517 4148.2759 36.5053
7 2448.2759 36.9711 4862.0690 48.4115
8 2858.6207 47.6783 5617.2414 62.8150
8 3172.4138 60.9821 6275.6821 79.7159
10 3434.4828 76.6382 6882.7586 98.9919

According to Table (3.1), it is observed that the average of the mean and
variance for the outlier free series (@ = 0) are 0.0029 and 1.3094 respectively. From
Tables (3.1) and (3.2) it is clear that an outlier of either type in the series has effect on
the mean and variance and the inflated values of the mean and variance are obtained
with increasing magnitude of outlier parameter o, though the effect of 10 on both the
mean and variance of the series is much more prominent for AR(1) series.

Suppose that the observed series Y, follows MA(1) model with a single outlier
AO type at T, which is modeled as

Y, =P, +Z, (32.7)



51

where Z= a; — 0 a; is the MA(1) model for outlier free series, ® is the outlier
parameter, 0 is the moving average parameter and a; is the error term with mean '0'
and variance o2 and P™ =1 ift =T and P™ =0 otherwise. The model (3.2.7) can

be written as

Y, =oP™ +a,—0a,, (3.2.8)
It can be simplified to
Y=o +a—0a ,t=T
=2a,—0 ay ,t=T 3.2.9)
Similarly, the MA(1) model with an IO type outlier is considered as
Y, =oyB)P" +a, —0a,, (3.2.10)
giving,
Yi=a—0ay Lt<T
=@ +a;—0a ,t=T
=¥, +a-0ay ,i4=T+1
=a;—0 an 2= T+] (3.2.11)
where ¥, =-0.

Analogous to AR(1), one particular generated outlier free series of MA(1) and
the correspondihg outlier contaminated series for AO and IO at t = 50 with @ =10 are

plotted in Figure 3.2.

Figure 3.2 Cenerated MA(1) Series with an Outlier at t =50
0=100,0=-03,p=0, 0>=1, 0 = 10)
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Figure 3.2 shows that an AO outlier affects the series at time point t = 50 only.
An IO affects the series at t = 50 and its decaying effect can be seen at t = 51 as well.
Since the weights ¥ of MA(1) are equal to zero when j > 1, there is no IO effect after
t=>51.

As in AR(1) model, fora particular generated MA(I) model with n = 100,

8=-03,u=0, 0'3 =1 andw=0,1,...,10, based on 1000 replications, the average

of mean and variance for outlier free series (@ = 0), AO and IO series at t = 50 are as

below.

Table (3.3)
Average of Mean and Variance for MA(1) Model with an AO and an IO at t=50

(n=100,0=-0.3, n =0, 03 =1; 1000 replications)

AO 10

o Mean | Variance| Mean | Variance
0 —0.0005 | 1.0826 | —0.0005 | 1.0826
1 0.0071 1.0946 0.0048 1.0959
2 0.0189 | 1.1207 | 0.0143 1.1251
3 0.0357 1.1717 | 0.0288 1.1807
4 0.0394 1.2484 | 0.0302 1.2656
5 0.0575 1.3323 0.0459 1.3592
6 0.0607 |. 1.4560 | 0.0468 1.4921
7 0.0717 1.5661 0.0555 1.6169
8 0.0825 1.7117 | 0.0641 1.7779
9 0.0862 1.8969 | 0.0654 1.9818
10 0.0979 | 2.0779 | 0.0748 2.1824

The following table shows that the relative changes (RC) of each estimated

value of mean and variance for the generated MA(I) series with an AO and an IO

at t=50 for ®=0,1, ...,10,u=0, ¢>=1and 6 =-0.3.
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Relative Changes (%) for Average of Mean and Variance for MA(1) Model with

an AO and an IO at t =50 (n=100,0=-0.3,n. =0, 0': =1; 1000 replications)

AO I0

o) RC for RC for RC for RC for

Mean Variance Mean Variance
1 -1520 1.1084 -1060 1.2285
2 -3880 3.5193 -2960 3.9257
3 -7240 8.2302 -5860 9.0615
4 -7980 15.3150 -6140 16.9038
5 -11600 23.0648 -9280 25.5496
6 -12240 34.4910 -9460 37.8256
7 -14440 44.6610 -11200 49.3534
8 -16600 58.1101 -12920 64.2250
8 -17340 75.2171 -13180 83.0593
10 -19680 91.9361 -15060 101.5888

According to Table (3.3), it can be seen that the average of the mean and
variance for the outlier free series (o = 0) are -0.0005 and 1.0826 respectively. From
Tables (3.3) and (3.4), it is observed that an outlier of either type in the series has
effect on the mean and variance and the higher values of mean and variance are found
with increasing magnitude of outlier parameter , though the effect of AO on the
mean of the series is much more prominent but the effect of IO on variance of the '
series is much more prominent for MA(1) series.

Again, the observed series Y, with ARMA(1,1) model is now considered and a
single AO type outlier at T is given by

Y, =P +Z, (32.12)
where Z; = ¢ Zy.1 + a, — 0 a,; is the ARMA(1,1) model which is an outlier free series,

o is the outlier parameter, ¢ and 0 are the autoregressive and moving average

parameters respectively and a is the error term with mean '0' and variance o and

PM =1 ift=Tand PV =0 elsewhere. The model can be described as

Y, =oP, +0Z,_, +a,~0ay (32.13)
Hence, the AO model can be represented as
Yi=0o+¢Zy+a—0ay =T
=¢ Zp1 +a—0an 12T (3.2.14)
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Similarly, to study the effect of IO type outlier on the observed series, the 10

outlier model
Y, =oyB)P" +Z, (3.2.15)
is considered. Here, Z, follows the ARMA(1,1) model in Equation (3.2.12), @ is the

outlier parameter and P(™ is an indicator function as mentioned above. This model

can be represented as

Y, =oyB)PP +¢Z,, +a,— 0 an (3.2.16)
which can alternatively be written as
Yi=¢Z1+a—0ay ,t<T
=m\u,_T+¢Z,_1 +a—0 ayg 12T (3.2.17)

where ¥; = ¢"'(¢ — 0) for ARMA(1,1) model.

In order to study the effect of outliers in the ARMA(1,1) model, one particular
generated outlier free ARMA(I,I) series and the corresponding outlier contaminated
series for AO and IO outliers at t = 50 for © = 10 are plotted and it shows that the
effect of AO is at t = 50 only whereas IO affects the observation at t = 50 and the

succeeding observations as well.

10 7~

(o 1]
1
3

— ARMA(1,1)

Figure 3.3  Generated ARMA(1,1) Series with an Outlier at t=50
(n=100,¢=05,0=-03,p=0, o.=1,0 =10)
For a particular generated ARMA(1,1) model with n = 100, ¢ = 0.5,
0=-03,u=0, 0'3 =land®=0, 1, ..., 10, based on 1000 replications, the average
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values of mean and variance for outlier free series (w = 0), AO and IO series at t = 50

are obtained as follow.
Table (3.5) |
Average of Mean and Variance for ARMA(1,1) Model with an AO and an IO at t=50

(n=100, ¢ =0.5,0 =-0.3, p = 0, o->=1; 1000 replications)

} AO I0
® AMane | Yrai 'WZE T 1
0 0.0064 1.8019 0.0064 1.8019
1 0.0072 1.8081 0.0292 1.8340
2 0.0194 1.8443 0.0634 1.9378
3 0.0230 1.8851 0.0890 2.1006
4 0.0487 1.9525 0.1367 2.2363
5 0.0490 2.0423 0.1590 2.6253
6 0.0678 2.1630 0.1998 3.0124
7 0.0696 2.3068 0.2209 3.4517
8 0.0759 2.4458 0.2519 3.9238
9 0.0864 2.6290 0.2844 4.5388
10 0.0962 2.7934 0.3162 5.1192

The following table shows that the relative changes (RC) of each estimated
value of mean and variance for the generated ARMAC(I, 1) series with an AO and an
IO at t=50 for ©=0,1, ...,10,p=0, 0’=1,¢6=0.5and 6 =-0.3.

Table (3.6)
Relative Changes (%) for Average of Mean and Variance for ARMA(1, i) Model
with an AO and an IO at t=50
(n=100, ¢ =0.5,0 =-0.3, p=0, o’ =1; 1000 replications)

AO I0

o RC for RC for RC for RC for

Mean Variance Mean Variance
1 12.5000 0.3441 356.2500 1.7815
2 203.1250 2.3531 890.6250 7.5420
3 259.3750 4.6173 1290.6250 16.5769
4 660.9375 8.3578 2035.9375 24.1079
5 665.6250 13.3415 2384.3750 45.6962
6 959.3750 - 20.0400 3021.8750 67.1791
7 987.5000 28.0204 3351.5625 91.5589
8 1085.9375 35.7345 3835.9375 117.7590
8 1250.0000 49.9015 4343.7500 151.8897
10 1403.1250 55.0253 4840.6250 184.1001
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According to Table (3.5), it is observed that the average of the mean and
variance for the outlier free series (@ = 0) are 0.0064 and 1.8019 respectively. From
Tables (3.5) and (3.6) it is noticed that an outlier of both types in the series have effect
on the mean and variance and the inflated values of mean and variance are resulted
with increasing magnitude of outlier parameter o, though the effect of IO on both the
mean and variance of the series is much more prominent for ARMAC(1,1) series as in

the case of AR(1).

Based on the simulated results, the effect of I0 on the mean is much more
significant for both AR(1) and ARMAC(1,1) series but the effect of AO on the mean is
much more prominent for MA(1) series. In addition, it is also clear that the effect of
IO on the variance is much more obvious than the effect of AO for both AR(1) and
MA(1) as well as ARMA(1,1) cases. Moreover, it can be concluded that the effect of

outlier on mean and variance depends on both magnitude and type of outlier.

33 Effects on Autocorrelation and Partial Autocorrelation Functions

For each of the generated AR(1) and MA(1) outlier free series, together with
their respective AO and IO series, the lag-1 autocorrelation coefficient p; and the lag-
1 partial autocorrelation coefficient ¢,; were estimated. Since the values of p; and ¢;;
afe identical in both AR(1) and MA(I) cases, it only needs to study the effect of

outliers on the autocorrelation function.

The following table represents the average of estimated values of p; for the
generated AR(1) outlier free series (® = 0) and the corresponding outlier
contaminated series with an AO and an IO outliersat t=50 for ©=0, 1,..., 10,

p=0, o’=land ¢=0..



57

Table (3.7)
Average of Estimated Values of p; : AR(1) with an AO and an IO at t=50

(2=100, ¢ = 0.5, p =0, o> =1; 1000 replications)

Estimated Values of p;
® AO 10
0 04702 | 04702
1 0.4664 0.4703
3 0.4539 0.4686
3 0.4361 0.4673
4 0.4178 0.4711
5 0.3964 0.4761
6 0.3635 0.4706
7 0.3373 0.4720
8 0.3104 0.4720
9 0.2866 0.4747
10 0.2632 0.4765

The following table shows that the relative changes (RC) of each estimated

value of lag-1 autocorrelation p; for the generated AR (1) series with an AO and an

10 at t=50 for ®=0,1, ...,10,p=0, 0’=1and ¢ =0.5.

Table (3.8)
Relative Changes (%) for Average of Estimated Values of p; : AR(1) with an AO.
and an IO at t =50 (n=100, $ = 0.5, p = 0, o> =1; 1000 replications)

RC for Estimated Values of p;

® AO 10

1 -0.8082 0.0213
2 -3.4666 -0.3403
3 -7.2522 -0.6168
4 -11.1442 0.1914
5 -15.6954 1.2548
6 -22.6925 0.0851
7 -28.2646 0.3828
8 -33.9855 0.3828
9 -39.0472 0.9570
10 -44.0238 1.3399

According to Table (3.7), it is observed that the average of estimated value of

lag-1 autocorrelation coefficient p, for the outlier free series (@ = 0) is 0.4702. From

L
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Tables (3.7) and (3.8), it can be seen that the estimated values of p1 do not change
significantly with the increasing values outlier » for IO case of AR(1) series.
However, the estimated value of lag-1 autocorrelation p; decreases as the value of
outlier parameter o increases for AO case of AR(1) series. It is clear that the effect of
outlier on the autocorrelation function is much more significant in the case of AO than
that of IO for AR(1) series. The same conclusion can be made for the effect of outlier
on the partial autocorrelation function ¢,; since the values of both p; and ¢y, are equal
for AR(1) series.

The following table shows the average of estimated values of p1 for the
generated MA(1) outlier free series (@ = 0) and the corresponding outlier
contaminated series with an AO and an IO outlier at t = 50 for @ = 0,1, ...,10and

0 =-0.3, based on 1000 replications.

Table (3.9)
Average of Estimated Values of p; : MA(1) with an AO and an IO at =50

(=100, 6 = -0.3, u = 0, o2 =1; 1000 replications)

Estimated Values of p,
@ AO I0
0 0.2462 0.2462
1 0.2605 0.2628
2 0.2502 0.2594
3 0.2395 0.2595
4 0.2321 0.2662
5 0.2294 0.2828
6 0.1994 0.2658
7 0.1577 0.2438
8 0.1563 0.2581
9 0.1550 0.2707
10 0.1215 0.2555

The following table shows that the relative changes (RC) of each estimated

value of lag-1 autocorrelation p; for the generated MA (1) series with an AO and an

IO at t=50 for ©=0,1, ...,10,1=0, 0>=1and 6 =-0.3.
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Table (3.10)
Relative Changes (%) for Average of Estimated Values of p; : MA(1) with an
AO and an IO at t =50 (n=100,0 = -0.3, p = 0, o> =1; 1000 replications)

_ RC for Estimated Values of p,

N AO 10

1 5.8083 6.7425
2 1.6247 5.3615
3 -2.7214 5.4021
4 -5.7271 8.1235
5 -6.8237 14.8660
6 -19.0089 7.9610
7 -35.9464 -0.9748
8 -36.5150 4.8335
9 -37.0431 9.9513
10 -50.6499 3.7774

According to Table (3.9), it can be seen that the average of estimated value of
lag-1 autocorrelation p; for the outlier free series (w = 0) is 0.2462. According to
Tables (3.9) and (3.10), it is evident that the effect of outlier on the autocorrelation
function is much more obvious in the case of AO than that of IO for MAC(1) series as
in the case of AR(1). For MA(1) series, it can also be seen that the estimated values of
p1do not change significantly with the increasing values of outlier parameter for IO
case. But, the higher the values of the outlier parameter o, the larger the effect of AO
outlier on MA(1) series. The same conclusion can be made for the effect of outlier on
the partial autocorrelation function since the values of both p, and ¢,, are also
identical for MA(1) series.

For each of the generated ARMA(I, 1) outlier free series (@ = 0), together
with their respective AO and IO series, the lag-1 autocorrelation coefficient p1 and the
lag-1 partial autocorrelation coefficient ¢;; were estimated. Since the values of p1 and
¢11 are identical in ARMA(1, 1) case as in the both AR(1) and MA(1) cases, it is
enough to study the effect of outliers on the autocorrelation function only.

The following table represents the average of estimated values of p; for the
generated ARMA(1,1) outlier free series (w = 0) and the corresponding outlier

contaminated series with an AO and an IO outliers att =50 for o = 0,1,...,

10,u=0, o’=1,¢=0.5 and 6 =-0.3, based on 1000 replications.
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Table (3.11)
Average of Estimated Values of p; : ARMA(1,1) with an AO and an IO at t =50

(n=100,¢ =0.5,0=-0.3,n =0, 03 =1; 1000 replications)

Estimated Values of p,
® AO I0
0 0.6329 0.6329
1 0.6365 0.6385
2 0.6118 0.6141
3 0.6056 0.6121
4 0.5737 0.5969
5 0.5527 0.5826
6 0.5166 0.5697
7 0.5040 0.5621
8 0.4456 0.5377
9 0.4121 0.5333
10 0.3977 0.5303

The following table shows that the relative changes (RC) of each estimated

value of lag-1 autocorrelation p, for the generated ARMA(1, 1) series with an AO
and an IO at t=50 for ®=0,1, ...,10,p=0, 0>=1,¢=0.5and 6 =-0.3.

Table (3.12)
Relative Changes (%) for Average of Estimated Values of p; :
 ARMA(1,1) with an AO and an IO at t =50
(n=100, ¢ =0.5,0 = -0.3, p = 0, o> =1; 1000 replications)

RC for Estimated Values of p;

° AO I0

1 0.5688 0.8848
2 -3.3339 -2.9705
3 -4.3135 -3.2865
4 -9.3538 -5.6881
5 -12.6718 -7.9475
6 -18.3757 -9.9858
7 -20.3666 -11.1866
8 -29.5939 -15.0419
9 -34.8870 -15.7371
10 -37.1623 -16.2111
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According to Table (3.11), it is obtained that the average of estimated value of
lag-1 autocorrelation p; for the outlier free series (@ = 0) is 0.6329. From Tables
(3.11) and (3.12), it can also be seen that the estimated value of lag-1 autocorrelation
p1 decreases as the value of outlier parameter ® increases for both AO and IO cases of
ARMA(1,1) series. However, it is clear that the effect of outliers on the
autocorrelation function is much more significant in the case of AO than that of 10 for
ARMA(1,1) series as in both AR(1) and MA(1) series. The same conclusion can be
made for the effect of outlier on the partial autocorrelation function since the values of
both p; and ¢ are equal for ARMA(1,1) case.

From the simulated results, it is clear that the effect of presence of outlier on
the estimates of autocorrelation and partial autocorrelation functions depend on both
the magnitude and type of outlier for the underlying models of AR(1), MA(1) and
ARMA(1,1).

34 Effects on Parameter Estimates and Error Variances
For each of the generated outlier free AR(1), MA(1) and ARMA(1,1) series
along with their corresponding outlier contaminated series with AO and IO outliers,

the parameters of interest, namely the time series parameters ¢ for AR(1), 0 for

MA(1), both ¢ and © for ARMA(1,1), as well as the error variance o for each series

were estimated.

The table below represents the estimated values of ¢ and o for the generated

AR(1) outlier free (o = 0) series and the corresponding outlier contaminated series
withan AO andanIO att=50foro =0,1, ...,10,p =0, o2 =1 and ¢ = 0.5, based

on 1000 replications.
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Table (3.13)
Average of Estimated Values of ¢ and o’ : AR(1) with an AO and an IO at t=50

(n=100, ¢ =0.5, p =0, o> =1; 1000 replications)

Estimated Value of ¢ Estimated Value of o’
® AO IO AO IO
0 0.4899 0.4899 0.9909 0.9909
1 0.4874 0.4913 0.9991 0.9968
2 0.4747 0.4895 1.0390 1.0290
3 0.4561 0.4876 1.0927 1.0727
4 0.4387 0.4918 1.1893 1.1543
5 0.4155 0.4953 1.2931 1.2245
6 0.3820 0.4892 1.4302 1.3606
7 0.3548 0.4904 1.5594 1.4716
8 0.3285 0.4910 1.7477 1.6459
9 0.3044 0.4933 1.9324 1.8091
10 0.2807 0.4947 2.1386 2.0004

The following table shows that the relative changes (RC) of each estimated

parameter ¢ and o for the generated AR(1) series with an AO and an IO at t=50
for ©=0,1, ...,10,u0=0, o>=1and ¢ = 0.5.

Table (3.14)
Relative Changes (%) for Average of Estimated Values of ¢ and o?: AR(1)

with an AO and an IO at t =50 (n=100, ¢ = 0.5, n =0, o> =1; 1000 replications)

RC for Estimated Value of ¢ | RC for Estimated Value o

@ AO 10 AO 10

1 -0.51 0.29 0.83 0.60
2 -3.10 -0.08 4.85 3.84
3 -6.90 -0.47 10.27 8.26
4 -10.45 0.39 20.02 16.49
5 -15.19 1.10 30.50 23.57
6 -22.02 -0.14 44.33 37.31
7 -27.58 0.10 57.37 48.51
8 -32.95 0.22 76.38 66.10
9 -37.86 0.69 95.01 82.57
10 -42.70 0.98 115.82 101.88

From Table (3.13), it is observed that the average of estimated values of ¢ and
o’ for the generated AR(1) outlier free (@ = 0) series are 0.4899 and 0.9909
respectively. According to Tables (3.13) and (3.14), the estimated values of ¢ do not

change significantly with varying outlier parameter  in the case of IO as compared to
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AO for AR(1) series. In the case of AO, estimated values of parameter ¢ decrease
with the increasing magnitude of outlier parameter @ that has been found as in
estimated autocorrelation values for AR(1) series. The effect of outlier on the
estimated values of ¢ is less for IO. It can also be seen from Tables (3.13) and 3.19)
that with increasing magnitude of outlier parameter o, the estimate of all parameters
change, though the effect on the estimate of the error variance 0'3 is much more
prominent and the error variance tends to be overestimated more and more with
higher values of outlier parameter @ in both AO and IO cases. This overestimation
happens irrespective of the type of outlier, though the overestimation is more
prominent in the case of AO for AR(1) series. It is clear from the simulated results
that the effect of the presence of outlier of either type on the estimate of error variance
o’ is much more than that on the estimate of ¢.

The table below shows the average of estimated values of 8 and o for the
generated MA(1) outlier free series (@ = 0) and corresponding outlier contaminated
series with an AO and an IO at t=50 for ©=0,1, ...,10, u=0, o>=1 and
0 =—0.3, based on 1000 replications.

Table (3.15)
Average of Estimated Values of 0 and o : MA(1) with an AO and an IO at =50

(n=100,0 =-0.3,u=0, 0'3 =1; 1000 replications)

Estimated Value of 0 Estimated Value of o2
@ AO IO AO 10
0 -0.2942 -0.2942 1.0135 1.0135
1 -0.2934 -0.2948 1.0216 1.0208
2 -0.2927 -0.2930 1.0434 1.0412
3 -0.2888 -0.2992 1.0904 1.0810
4 -0.2626 -0.2961 1.2046 1.1910
5 -0.2600 -0.2902 1.2838 1.2612
6 -0.2296 -0.2961 1.3840 1.3556
7 -0.1869 -0.2925 1.4989 1.4640
8 -0.1759 -0.2992 1.6445 1.6054
9 -0.1671 -0.2977 1.8718 1.8167
10 -0.1359 -0.2935 2.0381 1.9863
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The table below indicates the relative changes (RC) for estimated values of 0
and o? for the generated MA(1) outlier contaminated series with an AO and an IO at
t=50foro=0,1, ...,10,u=0, 0'3 =1 and 6 = —0.3, based on 1000 replications.

Table (3.16)
Relative Changes (%) for Average of Estimated Values of 6 and o : MA(1)

with an AO and an IO at t = 50 (n=100,0 =-0.3,u=0, 0'3 =1; 1000 replications)

RC for Estimated Value of 8 | RC for Estimated Value o’

@ AO I0 AO 10

1 -0.27 0.20 0.80 0.72
2 -0.51 -0.41 2.95 2.73
3 -1.84 1.70 7.59 6.66
4 -10.74 0.65 18.86 17.51
5 -11.62 -1.36 26.67 24.44
6 -21.96 0.65 36.56 33.75
7 -36.47 -0.58 47.89 44.45
8 -40.21 1.70 62.26 58.40
9 -43.20 1.19 84.69 79.25
10 -53.81 -0.24 101.10 95.98

From Table (3.15), it can be seen that the average of estimated values of 6 and
o’ for the generated MA(1) outlier free (0 = 0) series are -0.2942 and 1.0135
respectively. According to Tables (3.15) and (3.16), the estimated values of 6 do-not
differ much from the estimated value of © without an outlier in the case of IO but

show significant change in the case of AO for MA(1) series. The higher the value of

®, the lower the value of estimate of 0 for AO case. It can also be seen that the
estimate of error variance o increases with the value of o, irrespective of the type of
outlier and differ much more in AO than IO. Also, analogous to AR(1), AO shows
higher impact on the estimate of error variance o> than IO for MA(1). It is clear from
the simulated results that the effect of the presence of outlier of either type on the
estimate of error variance ¢ is much more than that on the estimate of 0.

The table below represents the average of estimated values of ¢, 0 and ¢ for
the generated ARMA(1,1) outlier free series (@ = 0) and the corresponding outlier
contaminated series with an AO andan IO att=50foro =0,1, ..., 10, u =0,
o’=1,¢=0.5and 6 = —0.3, based on 1000 replications.



Table (3.17)
Average of Estimated Values of ¢ and o : ARMA(1,1) with an AO and an 10

att=50(n=100, ¢ =0.5,0=-0.3,u=0, 0'2 =1; 1000 replications)

Estimated Value of ¢ Estimated Value of © | Estimated Value of o

® AO IO AO 10 AO 10

0 0.4912 0.4912 -0.3161 -0.3161 0.9788 0.9788
1 0.4954 0.4948 -0.2973 -0.3075 0.9910 0.9850
2 0.4872 0.4879 -0.2742 -0.3115 1.0374 1.0110
3 0.4897 0.4900 -0.2335 -0.3115 1.1270 1.0716
4 0.4890 0.4885 -0.1701 -0.3023 1.2260 1.1299
5 0.4950 0.4937 -0.1243 -0.3074 1.3584 1.2254
6 0.4879 0.4892 -0.0830 -0.3089 1.5089 1.3301
(4 0.4951 0.4935 -0.0200 -0.3014 1.6732 1.4617
8 0.4919 0.4953 0.0138 -0.3025 1.8600 1.6099
9 0.4943 0.4943 0.0581 -0.3085 2.0598 1.7779
10 0.4969 0.4993 0.0993 -0.3011 2.2864 1.9501

The table below represents the relative changes (RC) for estimated values

of ¢, 0 and o’ for the generated ARMA(1,1) outlier contaminated series with

an AO and an IO at t=50 for ©=0,1, ...,10, p=0, 2 =1, $=0.5 and

0 =-0.3, based on 1000 replications.

Table (3.18)

Relative Changes (%) for Average of Estimated Values of ¢ and o:

ARMA(1, 1) with an AO and an IO at t =50
(n=100, $=0.5, 6=-0.3,1=0, c>=1; 1000 replications)

RC for Estimated RC for Estimated RC for Estimated

o Value of ¢ Value of 0 Value of o’
. AO 10 AO 10 AO I0

1 0.86 0.73 -5.95 -2.72 1.25 0.63
2 -0.81 -0.67 -13.26 -1.46 5.99 3.39
3 -0.31 -0.24 -26.13 -1.46 15.14 9.48
4 -0.45 -0.55 -46.19 -4.37 25.26 15.44
5 -0.77 0.51 -60.68 -2.75 38.78 25.19
6 -0.67 -0.41 -73.74 -2.28 54.16 35.89
7 -0.79 0.47 -93.67 -4.65 71.97 49.34
8 -0.14 0.83 -104.37 -4.30 90.03 64.48
9 -0.63 0.63 -118.38 -2.40 110.44 81.64
10 1.16 1.65 -131.41 -4.75 133.69 99.23




66

From Table (3.17), it can be seen that the average of estimated values of ¢, 6
and o for the generated ARMA(1,1) outlier free series (@ = 0) are 0.4912, -0.3161

and 0.9788 respectively. According to Tables (3.17) and (3.18), the estimated values
of ¢ do not differ significantly with varying values of ® for both AO and IO
cases of ARMA(1,1) series. Moreover, the estimated values of 0 also do not vary
significantly with the increasing magnitude of outlier parameter @ in the IO case of
ARMA(1,1) series. However, the estimated values of parameter 0 decrease
significantly with the increasing magnitude of outlier parameter o in AO case for
ARMA(1,1) series. It can also be seen from Table (3.11) and (3.12) that with
increasing magnitude of outlier parameter ®, the estimates of parameters (¢ and 6)
change and the effect is larger for the estimated values of © than that of ¢ in both AO
and IO cases of ARMAC(1,1) series. It is also found that the effect of outlier on the
estimated values of 0 is larger for AO than that of IO case. It can also be seen that the
error variance tends to get overestimated significantly with higher values of outlier
parameter o in both cases of AO and IO for ARMA(,1) series. This overestimation
is irrespective of the type of outlier, though the overestimation is more prominent in
case of AO for ARMA(1,1) series.

Based on the results presented, it is clear that for both AR(1) and MA(1) as

well as ARMA(1,1), the estimate of error variance o is affected significantly by the

presence of outlier and the effect increases with increasing values of outlier parameter
o, irrespective of the type of outlier. In addition, the effect on the estimates of time
series parameters as well as the error variance depends on both the magnitude and
type of outlier.

It is clear that the presence of a single outlier of either type significantly
dverestimates the error variance. The finding provides empirical support to the claims
in the literature that "the presence of outlier affects the estimate of error variance more
than that of time series parameters" (Bruce and Martin, 1989; Ledolter, 1990).

This also supports the justification for using estimates of error variance for
outlier detection procedure in addition to its usefulness in verifying model adequacy.
Also the empirical study shows that though the presence of AO affects the estimate of

error variance more than that of 10, the effect of 10 on the estimate of error variance
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is also high and needs to be taken into account, contrary to some of the claims in the
literature (Chang and Tiao, 1983; Bruce and Martin, 1989; Ljung, 1993).

35 Effects on AIC and BIC
In this section, the effect of an outlier on some model selection criteria based
on residuals such as Akaike's Information Criterion (AIC) and Bayesian Information

Criterion (BIC) are considered. Both AIC and BIC are monotone functions of the

2

a?

prediction error varianceo,, usually estimated by the maximum likelihood (ML)

estimate. The definitions of AIC and BIC are also presented in Appendix A. The
commonly used ML-based AIC and BIC are affected by outliers in two ways: (a) they
are distorted by grossly unreliable parameter estimates, and (b) they are greatly
inflated by outliers (Martin, 1980).

For each of the generated outlier free (@ = 0) AR(1) series together their
corresponding outlier contaminated series with AO and 10 outliers, the values of AIC
and BIC were estimated.

The following table shows the average of estimated values of AIC and BIC for
the generated AR(1) outlier free series (@ = 0) and the corresponding outlier

contaminated series with an AO and an IO att=50 foro = 0,1, ..., 10,u =0,
o’ =1and ¢ = 0.5, based on 1000 replications.
Table (3.19)
Average of Estimated Values of AIC and BIC: AR(1) with an AO and an IO
at t =50 (n=100, ¢ = 0.5, p =0, 0'3 =1; 1000 replications)

Estimated Value of AIC Estimated Value of BIC
® AO 10 AO 10
0 280.9652 280.9652 0.1290 0.1290
1 281.7932 281.5733 0.1373 0.1350
2 285.7621 284.8143 0.1764 0.1667
3 290.0750 288.9228 0.2268 0.2083
4 299.0750 296.1394 0.3115 0.2816
5 307.4578 303.6577 0.3952 0.3407
6 317.5019 312.4989 0.4960 0.4461
7 326.1275 320.3434 0.5825 0.5245
8 337.3607 331.4194 0.6965 0.6364
9 347.4249 340.6397 0.7969 0.7310
10 357.5022 350.8624 0.8983 0.8315
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The table below represents the relative changes (RC) for estimated values
of AIC and BIC for the generated AR(1) outlier contaminated series with an

AO and an IO at t=50 for ®=0,1, ...,10, p=0, o> =1and ¢ =0.5.

Table (3.20)
Relative Changes (%) for Average of Estimated Values of AIC and BIC: AR(1)

with an AO and an IO at t =50 (n=100,¢ =0.5, p =0, 03 =1; 1000 replications)

RC for Estimated Value of RC for Estimated Value of
[0 AIC BIC
AO 10 AO 10
1 0.2947 0.2164 6.4341 4.6512
2 1.7073 1.3700 36.7442 29.2248
3 3.2423 2.8322 75.8140 61.4729
4 6.4456 5.4007 141.4729 118.2946
5 9.4291 8.0766 206.3566 164.1085
6 13.0040 11.2233 284.4961 245.8140
7 16.0740 14.0153 351.5504 306.5891
8 20.0721 17.9575 439.9225 393.3333
9 23.6541 21.2391 517.7519 466.6667
10 27.2407 24.8775 596.3566 544.5736

According to Table (3.19), it can be seen that the average of estimated values
of AIC and BIC for the generated AR(1) outlier free series (@ = 0) are 280.9652 and
0.1290 respectively. From Tables (3.19) and (3.20), it is clear that the effect of an
outlier on the AIC and BIC is much more significant in the case of AO than that of IO
for AR(1) series. It is also noticed that the inflated values of AIC and BIC are
obtained when the values of outlier parameter ® increase.

Again, the following table represents the average of estimated values of AIC
and BIC for the MA(1) outlier free series (o = 0) and the corresponding outlier
contaminated series with an AO and an IO at t=50foro=0,1,2,...,10,u=0,

o’ =1 and 6 =—0.3, based on 1000 replications.
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Table (3.21)
Average of Estimated Values of AIC and BIC: MA(1) with an AO and an IO

at t =50 (0=100, 6 =-0.3, p =0, o’ =1; 1000 replications )

Estimated Value of AIC Estimated Value of BIC
® AO I0 AO 10
0 283.1458 283.1458 0.1216 0.1216
1 285.1909 285.1142 0.1595 0.1587
2 289.1839 289.0033 0.1806 0.1785
3 293.5158 292.6654 0.2247 0.2160
4 303.5555 302.4034 0.2343 0.3129
5 309.9643 308.2291 0.3880 0.3702
6 317.5166 315.4541 0.4631 0.4434
7 325.4445 323.1071 0.5429 0.5193
8 334.7490 332.4016 0.6356 0.6115
9 347.7773 344.8703 0.7651 0.7352
10 356.3748 353.8092 0.8502 0.8244

The table below represents the relative changes (RC) for estimated values

of AIC and BIC for the generated MA(1) outlier contaminated series with an
AO and an IO at t=50 for ©=0,1, ...,10, p=0, 0> =1and 6=-03.

Table (3.22)
Relative Changes (%) for Average of Estimated Values of AIC and BIC: MA(Q1)

with an AO and an IO at t = 50 (n=100, 6 =—0.3, p =0, 0'3 =1; 1000 replications)

RC for Estimated RC for Estimated
@ Value of AIC Value of BIC
AO 10 AO 10

1 0.7223 0.6952 31.1678 30.5099
2 2.1325 2.0687 48.5197 46.7928
3 3.6624 3.3621 84.8762 77.6316
4 7.2082 6.8013 92.6809 157.3191
5 94716 8.8588 219.0789 204.4408
6 12.1389 11.4105 280.8388 264.6382
7 14.9388 14.1133 346.4638 327.0559
8 18.2250 17.3959 422.6974 402.8783
9 22.8262 21.7995 529.1941 504.6053
10 25.8626 249565 599.1776 577.9605
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According to Table (3.21), it is found that the average of estimated values of
AIC and BIC for the generated MA(1) outlier free series (& = 0) are 283.1458 and
0.1216 respectively. From Tables (3.21) and (3.22), it is observed that the effect of
outlier on the AIC and BIC is also much more significant in the case of AO than that
of 10 for MA(1) series as in the case of AR(1). It is also seen that the increasing
values of AIC and BIC are obtained as the values of outlier parameter @ become

larger.

The values of AIC and BIC were also estimated for each of the generated
outlier free (# = 0) ARMA (1, 1) series together their corresponding outlier
contaminated series with AO and IO outlier.

The following table represents the average of estimated values of AIC and
BIC for the ARMA(1,1) outlier free (@ = 0) series and the corresponding outlier

contaminated series with an AO and an 10 at t=50 for ©=0,1, ...,10, p=0,

o2 =1¢=0.5and 6 = -0.3, based on 1000 replications.

Table (3.23)
Average of Estimated Values of AIC and BIC: ARMA(1,1) with an AO and

an IO at t =50 (n=100, ¢ =0.5,0=-03,u=0, 0'3 =1; 1000 replications)

Estimated Value of AIC Estimated Value of BIC

® AO 10 AO 10

0 281.8826 281.8826 0.1167 0.1167
1 283.1576 282.5657 0.1291 0.1230
2 287.7783 285.2520 0.1749 0.1491
3 295.8767 290.3409 0.2577 0.2073
4 304.1748 296.0799 0.3419 0.2603
5 314.3469 304.1226 0.4445 0.3414
6 324.8468 312.4259 0.5495 0.4234
7 335.0720 321.7155 0.6529 0.5178
8 345.6052 331.3625 0.7587 0.6143
9 355.8164 341.2210 0.8608 0.7136
10 366.1972 350.4690 0.9395 0.8060

The table below represents the relative changes (RC) for estimated
values of AIC and BIC for the generated ARMA(1,1) outlier contaminated series

with an AO and an IO at t=50 for ©=0,1, ...,10, p=0,02 =1, $=0.5

and 6 =-03.
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Table (3.24)

Relative Changes (%) for Average of Estimated Values of AIC and BIC:
ARMAC(1,1) with an AO and an IO at t =50

(n=100, ¢ =0.5,8 =—0.3, p =0, 2 =1; 1000 replications)

RC for Estimated RC for Estimated
0 Value of AIC Value of BIC
AO 10 AO IO
0.4523 0.2423 10.6255 5.3985
2.0915 1.1953 49.8715 27.7635
4.9643 3.0006 120.8226 77.6350
7.9083 5.0366 192.9734 123.0506
11.5170 7.8898 280.8912 192.5450

15.2419 10.8355 370.8655 262.8106
18.8693 14.1310 459.4687 343.7018
22.6061 17.5534 550.1285 426.3925
26.2286 21.0507 637.6178 511.4824
29.9112 24.3315 705.0557 590.6598
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According to Table (3.23), it is noticed that the average of estimated values of
AIC and BIC for the generated ARMA(1,1) outlier free series (o = 0) are 281.8826
and 0.1167 respectively. From Tables (3.23) and (3.24), it is observed that the effect
of outlier on the AIC and BIC is also much more significant in the case of AO than
that of IO for ARMA(1,1) series as in the case of both AR(1) and MA(1) series. It is
also seen that the increasing values of AIC and BIC are obtained as the values of
outlier parameter ® become larger.

According to the findings presented in this chapter, it is clear that both AO and
IO types of outlier affect on the mean ,variance, ACF, PACF , estimated error
variance, parameter estimates, AIC and BIC values. Therefore, it can be concluded
that there can be the problems in the model identification due to the effects of the

outliers.

3.6  Effects in Model Identification

Tolvi (1998) suggested that in time series of short to moderate length, often
the presence of a single outlier will result in a true AR model being falsely identified
as an MA or ARMA model, and that the identified lag lengths (p and q) will also be
wrong. Similarly, outliers bias estimated ARMA model parameters. Only AR and MA
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models are considered in this section because ARMA is a mixed model and it is
difficult to decide a model is an ARMA based on the ACF and PACF.

In order to study the effect of outlier in model identification, 100 outlier free
(0 =0) AR (1) series for n=100 and ¢ =0.7 were again generated using S-PLUS
and an AO and an IO with outlier parameters ® =0, 5, 10 were introduced at t = 50.

In the information criterion approach for model selection, models that yield a
minimum value for the criterion are to be preferred, and the AIC or BIC values are
compared among various model as the basis for the selection of the model. Since the
BIC criterion imposes a greater penalty for the number of estimated parameters than
does AIC, use of minimum BIC for model selection would always result in a chosen
model whose number of parameters is no greater than that chosen under AIC (Box at
el., 1994). Hence, the BIC was also used as the model selection criterion in this study.

To fit each generated AR(1) series, some other commonly used models such
as AR(2), MA(1), MA(2), ARMA(1,1), ARMA(2,1), ARMA(1,2) and ARMA(2,2)
were considered. The BIC values for each fitted models were computed and
compared with the BIC value of generated AR(1) model. If the BIC value of the
fitted AR(1) model is minimum among others, it is the correct model selection for the
generated AR(1) series. The following table represents the percentages of correct and
incorrect model selection cases for the generated AR(1) series based on BIC.

Table (3.25)

Correct and Incorrect Percentages of Model Selection Cases: AR(1) with
an AO and an JO at t =50 (n =100 and ¢ =0.7; 100 replications)

AO I0
® Correct % | Incorrect % | Correct% | Incorrect %
0 88 12 88 12
5 86 14 95 5
10 76 24 93 7

According to Table (3.25), it can be seen that the percentage of correct model
selection decreases as the value of outlier parameter increases in the AO case of
AR(1) series whereas the percentage of correct model selection does not decrease as
the value of outlier parameter increases in the IO case of AR(1) series. It can be said
that the outlier affects on model identification in the case of AR(1) with an AO.

Again, 100 outlier free (o = 0) MA(1) series for n = 100 and 0 = 0.7 were

generated using S-PLUS Software and an AO and an IO with outlier parameters
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o =0, 5, 10, were also introduced at t = 50. Then, each generated MA(1) series was
also fitted by some commonly used model as mentioned above and BIC values for
each fitted model were also computed and compared with the BIC value of the
generated MA(1) model. If the BIC values of the fitted possible models mentioned
above are greater than the BIC value of the correct fitted model MA(1), the correct
model is obtained for the generated MA(1) series. The following table indicates the
percentages of correct and incorrect model selection cases for the generated MA(1)
series based on BIC.
Table (3.26)

Correct and Incorrect Percentages of Model Selection Cases: MA(1) with
an AO and an 10 at t =50 (n =100 and 6 = 0.7; 100 replications)

AO (0]
® Correct % | Incorrect % | Correct % | Incorrect %
0 91 9 91 9
5 84 16 83 17
10 76 24 92 8

From Table (3.26), it is also shown that the percentage of correct model
selection cases declines as the value of outlier parameter increases in the AO case of
MA(1) series but the percentage of correct model selection does not decline as the
value of outlier parameter increases in the IO case of MA(1) series. Here, it can be
said that the outlier affects on model identification in the ¢ase of MA (1) with an AO.

According to the simulation results as shown in Tables (3.25) and (3.26), it is
clear that the effect of AO outlier is serious for both AR(1) and MA(1) models’
identification but effect of IO outlier is not as clear as AQ.

Each particular generated series for AR(1) and MA(1) were also considered
and the models were fitted by using the ACF and PACF.

' Here, under the hypothesis of the underlying process is a white noise

sequence, the variance of the ACF py can be approximated by

- 1 = =
V(py) ~ ;(l+2p12 +ot 207 ) (3.2.18)
and the variance of PACF c‘f) kk can be computed as
2 1
V(dpk) = o (3.2.19)
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Hence +2 S. E (Standard Error) can be used as critical limits on the ACF and PACF
to test the hypothesis of a white noise process.
The following figures show the plots of the ACF and PACF together with their

confidence limits for the generated outlier free AR(1) series as well as its outlier

contaminated series of AO (® = 10) and an IO (o = 10) at t = 50.
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Figure 3.4  ACF of Generated AR(1) Series (n =100, ¢ =0.7)
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Figure 3.5 PACF of Generated AR(1) Series (n =100, ¢ =0.7)




75

Figures 3.4 and 3.5 show that the generated AR(1) series follows an AR(1)
model] because the ACF of the generated AR(1) model tails off and the PACF of the
model] cuts off after lag 1.
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Figure3.6 = ACF of Generated AR(1) Series with an AO Outlier at t = 50
n=100,¢=0.7, ® =10)
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Figures 3.6 and 3.7 indicate that the ACF and PACF of the generated AR(1)
series with an AO (@ = 10) at t = 50 do not show the theoretical patterns of ACF and

PACF for an AR(1) model. It suggests a white noise or random phenomenon. Thus,
the generated AR(1) series with an AO outlier at t = 50 with @ = 10 does not follow

an AR(1)model.
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According to Figures 3.8 and 3.9, it is shown that ACF of AR(1) series with an
IO outlier (@ = 10) at t = 50 tails off and its PACF cuts off after lag 1. Therefore,
AR(1) series with an IO outlier (o = 10) is identified as an AR(1) model.

The following figures show the plots of the ACF and PACF for the generated
outlier free MA(1) series as well as its outlier contaminated series of an AO (0 =10)

and an IO (o = 10) at t = 50.
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Figure 3.10 ACF of Generated MA(1) Series (n =100,0 =0.7)
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Figure 3.11 PACF of Generated MA(1) Series (n =100,0 =0.7)
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From Figures 3.10 and 3.11, it can be seen that the generated MA(1) series
follows MA(1) model because the ACF of the generated series cuts off after lag 1 and
the PACF of the model tails off.
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Figure 3.12 ACF of Generated MA(1) Series with an AO Outlier at t =50
(n=100,0=0.7, ® =10)
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Figure 3.13 PACEF of Generated MA(1) Series with an AO Outlier at t =50
(n=100,0=0.7, ® = 10)
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Figures 3.12 and 3.13 indicate that the ACF and PACF of the generated
MA(1) series with an AO (o = 10) at t = 50 do not show the theoretical patterns of
ACF and PACF for MA(1) model. Therefore, it can be said that this series does not
follow MA(1)model.
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Figure 3.14 ACF of Generated MA(1) Series with an IO Outlier at t = 50
(n=100,6=0.7,®» =10)
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Figure 3.15 PACF of Generated MA(1) Series with an 10 Outlier at t = 50
(n=100,0=0.7, ®» =10)
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Figures 3.14 and 3.15 show that ACF of MA(]) series with an IO outlier
(o = 10) at t = 50 cuts off after lag 1 and its PACF tails off. Therefore, MA(1) series
with an IO outlier (o = 10) is identified as an MA(1) model.

Based on the simulated results as mentioned above, it can be concluded that
the effect of an AO outlier is more serious in model identification but an IO outlier

has no effect on model identification for both AR(1) and MA(1) cases.



CHAPTER IV

DETECTION AND ESTIMATION OF OUTLIERS
IN SELECTED ECONOMIC TIME SERIES

4.1 Selected Economic Time Series for Outliers Detection
For detection and estimation of outliers in economic time series, the published
figures on Myanmar Trade Statistics and data on Agricultural Production of Myanmar

are considered. The data series selected for the detection and estimation of outliers are

Base metals and ores export series (from 1955-56 to 2005-06)
Teak export series (from 1955-56 to 2005-06)

Wheat production series (from 1950-51 to 2005-06)

Lablab bean production series (from 1950-51 to 2005-06)
L‘ima bean production series (from 1950-51 to 2005-06)

Wk WO~

In this chapter, some ARIMA models with outliers are illustrated for detection
and estimation of outliers. The data analysis is carried out using SPSS (Statistical
Package for Social Sciences) and STDS (Statistical Time Series Diagnostic Software)
for the application of Likelihood Ratio Test (LRT) procedure and Adjustment
Diagnostic based on Variance estimate (ADV) method, respectively.

The results on identified outliers in the selected time series are compared. In
order to compare the reduction in the estimate of error variance after identification of
outliers, the percentage of reduction rate instead of the reduced estimates are used.
Apart from reduction in the estimate of error variance, model parsimony is also
considered to be an important criterion of analysis. Liu (2006) stated that an important
consideration when modeling time series is the principle of parsimony. This principle
refers to representing the systematic structure of the series with as few parameters as
possible. Essentially, this means simpler representations of a time series process are
more desirable than more complex ones if both are adequate. This principle leads to
the use of mixed ARMA models, rather than just pure AR or pure MA models. The
principle of parsimony will be further appreciated when the common occurrence of

outliers in time series is taken into consideration.
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Moreover, the diagnostic checking for the model adequacy and the
simultaneous estimation of the parameters for the fitted models are also presented in

this chapter.

4.2  Base Metals and Ores Export Series
In this section, "Base Metals and Ores Export Series (in thousand metric
ton) from 1955-56 to 2005-06" have been firstly selected for the detection of outliers.

The plot of the data series is shown in Figure 4.1.
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Figure 4.1 Plot of Base Metal and Ores Export Series (1955-1956 to 2005-2006)

In Figure 4.1, the unusual peaks at t= 32, 40 and troughs at t = 19, 44 are
found. They look like the possible outliers in this series. But the question is whether
all are the outliers or not and what are the types of outliers. It may be difficult to get
the correct answer by visualization from the time series sequence plot as in Figure 4.1
and the detection of outliers is an important issue in such case.

Firstly, the identification of the time series model is needed for the observed
data series. Using SPSS software, the plots of autocorrelation function (ACF) and
partial autocorrelation function (PACF) of the observed series are obtained which
show a tail off pattern of ACF and a cut off after lag 1 for PACF respectively. Hence,
the model suggested for this data is AR(1) specified by

(1-4B)Z,=0g +a, 4.2.1)
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where 6 is the overall constant in the model. Based on the tentative model AR(1)
without outlier , the fitted model is

(1-0.691 B) Z,=30.373 + a, 4.2.2)
with &'g‘ = 124.635. Under the model (4.2.1), the likelihood ratio test (LRT) using

SPSS and ADV procedure using STDS software are applied to detect the outliers.
Under AR(1) model, the analysis obtained by SPSS shows four outliers at time
points t = 32, 34, 40 and 44 by the LRT method with the critical value 3.5 along with

the conditional least squares estimation method. The suggested model is

1

- [mlpt(”) +0,P2Y +a, ]+ ;P8 + 0 P 4.2.3)

Zi= 0y +

Before carrying out the adjustment diagnostic on the series, the residual plot
(Figure 4.2) and the ADV plot (Figure 4.3) are obtined. The residual plot shows
unusual jumps at time points t = 32, 40 and the valleys at t = 34, 44 leading to the

suspicion of presence of multiple outliers in the data.
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Figure 4.2 Plot of Residuals for Base Metal and Ores Export Series

The ADV plot also gives a guideline on selection of waming value. If the
warning value 9 is chosen, it can be seen that the ADV plot in Figure 4.3 shows clear

peaks, at points t = 32, 40 and 44 indicating presence of outliers.
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Figure 4.3 Plot of ADV for Base Metal and Ores Export Series

The results obtained in carrying out the iterative procedure, and the results of

outlier detection analysis by two methods are summarized in the following table.

Table (4.1)

Outlier Detection of Base Metals and Ores Export Series

LRT ADV
Iteration -
Position Type Position Type
1 32 I0 32 10
2 34 IO 40 AO
3 40 AO 44 AO
4 44 AO - -

The ADV procedure diagnoses three outliers at time points t = 32, 40 and 44.
Hence the suggested model becomes

Z= 0y +——[0,P® +a, |+ 0,P® 4 0, 4.2.4)

1
—-¢B
For the sake of same estimation method and software, the SPSS software is

used for the parameter estimation based on the two suggested models (4.2.3) and

(4.2.4), the results are presented in Table (4.2).




Table (4.2) | /
Estimated Parameters of AR(1) with Outliers for
Base Metals and Ores Export Series

Model (4.2.3) Model (4.2.4)
Parameter
Estimate S.E Estimate S.E
09 30.398 5.663 28.076 4.654
o 0.837 0.068 0.773 0.076
o] 35.851 7.142 36.360 7.892
@ 24.487 5.434 24.547 6.197
a3 -21.513 5.433 -21.453 6.196
4 -24.320 7.293 - -
G.2 61.184 - 72.063 -
a

From the last row of the Table (4.2), though both the estimates &’g based on

two models show reduction in comparison with the estimate obtained on ignoring the
outliers, their values differ and model (4.2.3) gives a smaller estimate. The reduction
percentages in error variances for base metal and ores export series are shown in

Table (4.3).

Table (4.3)
The Reduction Percentage in Error Variance

for Base Metal and Ores Export Series

Model Estimated Variance Reduction Percent
AR(1) with 4 outliers (4.2.3) 61.184 (124.6349) 50.91%
AR(1) with 3 outliers (4.2.4) 72.063 (124.6349) 42.18%

Note: The values within the parentheses are the estimated variances ;> when outliers

are ignored.

From the above table, it is found that the reduction percentage of model (4.2.3)
is higher than that of model (4.2.4) and the difference between the reduction
percentages for two models is only 8.73%. At the same time, model (4.2.4) gives a

more parsimonious model, by detecting lesser number of outliers.

ADN104
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For the diagnostic checking of the fitted models, it is needed to check whether
the residuals are white noise or not. Thus, the characteristics of the ACF and PACF of

the residual series for the fitted models (4.2.3) and (4.2.4) are illustrated as in Figures
4.4 and 4.5 respectively.
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Figure 4.4 The ACF and PACF of Residual Series for Model (4.2.3)
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Figure 4.5 The ACF and PACF of Residual Series for Model (4.2.4)

From the above figures, it is clear that the residuals of two models do not have
any pattern and statistically significant since the estimated ACF of the residual series
for both models lie within the confidence limits (+2 standard error) at 5% level of

significant. This indicates that the population autocorrelations can be taken as zero
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and the residual series is white noise. Besides, Box-Ljung Q statistics for the two

models (4.2.3) and (4.2.4) are obtained as follows.

Table (4.4)

Box-Ljung Q statistic for the Two Models

Model Statistics DF Sig.
AR(1) with 4 outliers (4.2.3) 17.503 17 0.421
AR(1) with 3 outliers (4.2.4) 15.319 17 0.573

From Table (4.4), it is found that Box-Ljung Q statistic for the two models are
not significant at 5% level of significance which means that the two fitted models are
adequate for the base metal and ores export series. Based on the results of these
residual analyses, the two tentative models, (4.2.3) and (4.2.4) are adequate for the
observed data series.

ﬁut, model parsimony was also considered to be an important criterion of
analysis. Thus, we can conclude that the model (4.2.4) is more suitable by detecting
lesser number of outliers for the base metal and ores export series. Hence, the

simultaneous estimation of the parameters of the model is given by

Z,= 28.076 +ﬁ)—177—3B-[36.360P532> ra |+24.547P40 _21.453P00  (4.2.5)
(4.654) (0..076) (7.892) 6.197) (6.196) .

with caz = 72.063 where the values in parentheses below the parameter estimates are
the associated standard errors. As we have mentioned above, the fitted model (4.2.5)
with an IO at t = 32 (1986-87) and two AO's at t = 40 (1994-95) and t = 44 (1997-98)
give us the smaller estimated variance than outlier free model (4.2.1). Moreover, the
outliers have an effect on the autoregressive parameter, increasing from 0.691 to
0.773 .- The effects of outliers on the estimates of model parameters, the model
specification, forecasting and impact of outliers in time series modeling are serious
problemsin time series analysis. Hence, one should first examine whether there are
outliers in the data set before analyzing the time series and should also emphasis on
explaining the possible reasons for the occurances of detected outliers in the series.
For base metal and ores export series, a plot of outliers detected can be seen in

Figure 4.1. It is of interest to relate these features of outliers to some events which
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have occurred during the observed period. First, an 10 with positive sign at t = 32
indicates that base metal and ores export had risen remarkably up to 66 (thousand
metric tons) in 1986-87. It was due to the fact that pure copper, one of the new items
of mineral sector, could be produced and exported during this year. In 1987-88, base
metal and ores export continued to rise but it dropped afterwards.

Again, an AO with positive sign at t = 40 is detected in 1994-95 when the base
metal and ores export rose up to 54 (thousand metric tons) and it was also obvious
that more base metal and ores could be produced, as a result of the fact that the State
owned corporations made an effort by themselves and they also made concerted effort
with both internal and external enterprises.

Finally, an AO with negative sign at t = 44 indicates that base metal and ores
export dropped sharply to 8 (thousand metric tons) in 1998-99 as production of base
metal and ores fell dramatically during this year. It was due to the fact that the mineral
mines became scare, prices of some mineral dropped in world market and

consequently production of base metals and ores decreased.

4.3  Teak Export Series

The second selected economic time series for the detection of outliers is the
"Teak Export Series (in thousand cubic ton) from 1955-56 to 2005-06". The data are
plotted in Figure 4.6.
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Figure 4.6 Plot of Teak Export Series (1955-1956 to 2005-2006)
In the above figure, the values at t = 24, 36, and 46 look like the possible

outliers.
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For this series, an AR(1) model is also suggested, which is given by
(1-$B)Z=0o+a
and the fitted model with no outlier is obtained as
(1-0.891 B)Z; = 160.465 + a; (43.1)
with 2= 1478.864.

By likelihood ratio test (LRT) under the AR(1) model, AO at t = 24 is
identified. Using ADV method by STDS software, an AO is also identified at the
position of t = 24. Therefore, the detection of the position and type outliers by the two
procedures are identical.

Since both methods detect the same type of outlier at the same position, the
suggested AR(1) model with an AO outlier at t = 24 becomes

1 )
Z[ = 90 +0)1Pt(24) ‘I'mat (432)

The estimates of parameters for model (4.3.2) are presented in Table (4.5).

Table (4.5)
Estimated Parameters of AR(1) with an AO Outlier for Teak Export Series
Parameter Estimate S.E
h) 163.207 63.29
o 0.932 0.075
o 88.921 23.372
o2 1224.860 -

Hence, the simultaneous estimation of the parameters of the model is given by

Z,= 163.207 + 88.921P* +;at
1-0.932B

(63.29) 23372 (0.075)

(43.3)

with &2 = 1224.860 where the values in parentheses below the parameter estimates

are the associated standard errors.
From the above table, it is also noticed that the estimates of error variance caz
from model (4.3.3) reduces in comparison with the estimate obtained on ignoring the

outliers from model (4.3.1). The reduction percentage in error variance by model

(4.3.3) for teak export series is given in Table (4.6).
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Table (4.6)
The Reduction Percentage in Error Variance for Teak Export Series
Model Estimated Variance Reduction Percent
AR(1) with an outliers (4.3.3) 1224.860 17.18%
AR(1) with no outlier (4.3.1) 1478.864 -

From the Table (4.6), it is noticed that the error variance for model (4.3.3) is
smaller than that for model (4.3.1) and the reduction percentage in error variance by
model (4.3.3) is 17.18% when the effect of an AO att =24 is taken into account.

For the diagnostic checking, the residuals series of the fitted model with an
outlier is examined to check the residuals are white noise or not. Thus, the ACF and

PACF of the residual series for the fitted model with an outlier are plotted in

Figures 4.7.
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Figure 4.7 The ACF and PACF of Residual Series for Model (4.3.3)

From Figure 4.7, the ACF and PACF of the residuals series of the fitted model
do not form any pattern and statistically significant since the ACF and PACF lie
within two standard deviations for 5% level of significance.

Besides, Box-Ljung Q statistic of the fitted model is 17.028 which is not
significant at 5% level of significance. This means that the fitted model is adequate

for the teak export series. Based on the results of these residual analyses, the tentative
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model with an AO at t = 24 (1978-79) is found to be adequate for the observed data
series. '

First, an AO with positive sign at t = 24 is found when the sharp increase of
teak export occurred in 1978-79. It might be due to the fact that as the Timber
Extraction Project implemented with World Bank Loan had been completed in
1977-78, the final year of plan period, annual teak production in the ensuring years
increased by about 100 thousand cubic tons in 1978-79 and consequently, the export

of teak rose to 182.6 thousand cubic tons in this year.

4.4  Wheat Production Series
The LRT method and ADV method are now appiled for the detection of
outliers in the "Wheat Production Series (in thousand metric ton) from 1950-51 to

2005-06". The data are plotted in the following Figure.
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Figure 4.8 Plot of Wheat Production Series (1950-1951 to 2005-2006)

In the above figure, the values at t = 16, 29, and 34 look like the possible
outliers.
For this series, an AR(1) model is also suggested, which is given by
(1-¢B)Z; =00+ a
and the fitted model is obtained as
(1-0.938 B)Z;=79.832 + a (4.4.1)

with 2= 530.151,
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By likelihood ratio test (LRT) under the AR (1) model, an 10 att= 34 and an
AO at t = 29 are identified. Using ADV method, an IO and an AO are also identified
at the positions of t = 34 and t = 29 respectively, Therefore, the detection of outliers

by the two procedures are identical.
Thus, the fitted AR(1) model with an AO and an IO outlier outliers is given by

Zi= 0+ ——— 0P +2, ]+ 0 ,P® 4.42)
1-¢B
The estimates of parameters using SPSS for model (4.4.2) are presented in
Table (4.7).
Table (4.7)

Estimated Parameters of AR(1) with an AO and an 10 Outliers

for Wheat Production Series

Parameter Estimate S.E
0o 64.839 26.308
o 0.936 0.035
o 86.220 15.628
0 -49.744 11.223
o2 287.981 -

Hence, the simultaneous estimation of the parameters of the model is given by

7= 64.839+ =d [86.220Pt(34) +a, ]-. 49.7440,P®  (4.43)
1-0.936B
(26.308) (0.035) (15.628) (11.223)

with &'g = 287.981 where the values in parentheses below the parameter estimates are

the associated standard errors.

From the above table, it is also noticed that the estimate of error variance Oa
from model (4.4.3) reduces in comparison with the estimate obtained on ignoring the
outliers from model (4.4.1). The reduction percentage in error variance by model

(4.4.3) for wheat production series is given in Table (4.8).
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Table (4.8)
The Reduction Percentage in Error Variance for Wheat Production Series
Model ~ Estimated Variance Reduction Percent
AR(1) with 2 outliers (4.4.3) 287.981 45.67%
AR(1) with no outlier (4.4.1) 530.151 -

From Table (4.8), it is noticed that the error variance for model (4.4.3) is
smaller than that for model (4.4.1) and the reduction percentage in error variance by
model (4.4.3) is 45.67% when the effects of an IO at t = 34 and an AO at t =29 are
taken into account.

For the diagnostic checking, the residuals series of the fitted model with two
outliers is examined to check the residuals are white noise or not. Thus, the

ACF and PACEF of the residual series for the fitted model with outliers are plotted in

Figures 4.11.
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Figure 4.9 The ACF and PACF of Residual Series for Model (4.4.3)

From Figure 4.9, the ACF and PACF of the residuals series of the fitted model
do not form any pattern and statistically significant since the ACF and PACF lie
within two standard deviations for 5% level of significance.

Besides, Box-Ljung Q statistic of the fitted model is 12.407 which is not
significant at 5% level of significance. This means that the fitted model is adequate
for the wheat production series. Based on the results of these residual analyses, the
tentative model with an AO at t =29 (1978-79) and an 1O at t = 34 (1983-84) is found
to be adequate for the observed data series.
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First, an AO with negative sign at t =29 is found when the sharp fall of wheat
production occurred in 1978-79. It might be due to the fact that the number of
wrrigated area of wheat cultivation decreased relative to the previous years, and the
utilization of fertilizer and amount of pure strain of seeds distributed also declined.
Thus, the wheat production declined to 41 thousand metric tons in 1978-79.

Second, an IO with positive sign at t = 34 is detected as wheat production
increased to 210.2 thousand metric tons in 1983-84. The causes of such increase were
increase in the supply of pure strain of seeds, the utilization of fertilizer and
insecticides as wheat was considered as one of the most important crops. Besides,
new pure strain seeds, which became suitable for the climate of Myanmar, could be
produced after doing necessary agricultural research. Then, the State took necessary
measures to supply the pure strain of seeds to the cultivators. And, it rained enough
for the crops in late monsoon days, then the volume of wheat production not only
surpasséd the production of previous years but also it exceeded the production target.
Similarly, production of wheat in 1984-85 continued rising but it dropped

considerably in years to come.

4.5 Lablab Bean Production Series
The data series consider here is the "Production of Lablab Bean (in thousand

metric ton) during 1950-51 and 2005-06". The data series is plotted in Figure 4.10.
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Figure 4.10 Plot of Lablab Bean Production Series (1950-1951 to 2005-2006)
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In the above figure, the values at t = 30 and t = 34 look like the possible
outliers.
For the lablab bean production series an AR(1) model is suggested. The
suggested model and fitted models are
(1-$B)Z; =04+ 2
and
(1-0.944 B)Z,=45.489 + a, 4.5.1)

with &2 = 66.765.
An AO outlier is identified at t = 30 by both LR test and ADV method using

STDS. Thus, the detection outliers using both methods are in the same fashion,

Therefore, the fitted AR(1) model with an AO outlier at t = 30 in obtained as

1
Z(= 90 +0)1Pt(30) +ma[ (452)
The estimates of parameters for lablab bean production series using SPSS are
presented in Table (4.9).
Table (4.9)
Estimated Parameters of AR(1) with an AO Outlier for

Lablab Bean Prqduction Series

Parameter Estimate S.E
B 48.387 37.729
s 0.976 0.059
0 24.558 4.328
o2 49.546 -

Since both detection methods detect same type of outlier at same position, the
simultaneous estimation of the parameters of the model is given by
I

Z,= 48.387+24.558PP0 + — 4 (4.5.3)
1-0.976B
(37.729) (4.328) (0.059)

with 6’% = 49.546 where the values in parentheses below the parameter estimates are

the associated standard errors.
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From the above table, it is also noticed that the estimates of error variance G,

from model (4.5.3) reduces in comparison with the estimate obtained on ignoring the

outliers from model (4.5.1).

The reduction percentage in error variance for lablab bean production series is
given in Table (4.10). '

Table (4.10)
The Reduction Percentage in Error Variance for Lablab Bean Production Series
Model Estimated Variance Reduction Percent
AR(1) with an outlier (4.5.3) 49.546 25.79%
AR(1) with no outlier (4.5.1) 66.765 -

From the Table (4.10), it is noticed that the error variance for model (4.5.3) is
smaller than that for model (4.5.1) and the reduction percentage in error variance-by

model (4.5.3) is 25.79% when the effects of an AO at t = 30 are taken into account.

For the diagnostic checking, the residuals series of the fitted model with an
AO outlier is examined to check the residuals are white noise or not. Thus, the ACF

and PACF of the residual series for the fitted model with an outlier are plotted in

Figures 4.11.
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Figure 4.11 The ACF and PACF of Residual Series for Model (4.5.3)

From Figure 4.11, the ACF and PACF of the residuals series of the fitted
model do not have any pattern and statistically significant since the ACF and PACF

lie within two standard deviations for 5% level of significance except for a few lags.



97

Besides, Box-Ljung Q statistic of 26.562 the fitted model is not significant at
5% level of significance. This means that the fitted model is adequate for the lablab
bean production series. Based on the results of these residual analyses, the fitted
model (4.5.3) with an AO at t =30 (1979-80) is found to be adequate for the observed
data series.

For lablab bean production series, an AO with positive sign at t = 30 is
detected in 1979-80. This is related to lablab bean production obviously increased in
1979-80 with total yield of 63.8 thousand metric tons. It was a result of providing and
using of more fertilizers, insecticides and availability of pure strain of seeds in that
year. Additionally, varieties of beans had been started to grow in that year, with
technical assistance from the UNDP; and leadership of the State, concerted effort of
farmers and staff of the departments concerned, and availability of arable area also led

to abundant harvest.

4.6 Lima Bean Production Series
The data series considered in this section for the detection of outliers is "Lima
Bean Production Series (in thousand metric ton) during 1950-51 and 2005-06". The

lima bean production series is plotted in Figure 4.12.
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Figure 4.12 Plot of Lima Bean Production Series (1950-1951 to 2005-2006)

In the above figure, it is found that the unusual peaks at t = 5,9, 14, and 43.

They seem to be possible outliers.
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Using SPSS software, the AR(1) model
(1-¢B)Z;=0¢ + a,
is suggested for this data series. The fitted model is given by
(1-0.934 B)Z;=4.31+ a, (4.6.1)
with the variance 6’% = 1.0486 by the conditional least square estimation procedure.
Under AR(1) model, the analysis obtained by LRT method shows three
outliers such as an AO at time point t = 14, two IO's at time points t = 7. The
suggested outlier model is

1
- ¢B

7= 0y +- 0D 40,20 42, |+ 0,p09 4.62)

Before carrying out the adjustment diagnostic on the series, the residual plot

(Figure 4.13) and the ADV plot (Figure 4.14) are plotted.
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Figure 4.13 Plot of Residuals for Lima Bean Production Series

The above residual plot shows unusual points at time t = 14 to the suspicion of

presence of outlier in the data.
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Figure 4.14 Plot of ADV for Lima Bean Production Series

The ADV plot is now applied to detect the outliers in lima bean production
series. The above ADV plot indicates that the observation at t = 14 is a possibie
outlier of AO type. Based on the ADV plot, we select the warning value to be 9.

The results obtained on carrying out the iterative procedure, and the results ¢f

outlier detection analysis by two methods are summarized in Table (4.11) below.

Table (4.11)

Outlier Detection of Lima Bean Production Series

LRT ADV
Iteration
Position Type Position Type
7 I0 14 AO
2 10 IO - -
3 14 AO - -

The ADV procedure diagnoses an AO at t = 14. Hence the suggested model

becomes

1

Zi=0y+ o P!+ ——
0 1 ]—¢Bt

(4.6.3)

For the sake of same estimation method and software, we use the SPSS
software for the parameters estimation based on the two suggested models (4.6.2) and
(4.6.3), the estimation results for lima bean production series are presented in Table
(4.12).
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Table (4.12)
Estimated Parameters of AR(1) with Outliers for Lima Bean Production Series
Model (4.6.2) Model (4.6.3)
Parameter
Estimate S.EE Estimate S.E
0o 6.672 2.775 4.813 2.096
) 0.974 0.025 0.961 0.037
® -2.307 0.651 3.249 0.570
> -2.543 0.650 - -
@3 3.249 0.464 - -
Gi 0.423 - 0.658 -

From the last row of the Table (4.12), though both the estimates o2 based on
the two models show reduction in comparison with the estimate obtained on ignoring
the outliers, their values differ and model (4.6.2) gives a smaller estimate of error
variance. The reduction percentages in error variances for lima bean production series

are shown in the following table.

Table (4.13)

The Reduction Percentage in Error Variance for Lima Bean Production Series

Model Estimated Variance Reduction Percent
AR(1) with 3 outliers (4.6.2) 0.423 (1.049) 59.77%
AR(1) with 1 outlier (4.6.3) 0.658 (1.049) 37.30%

Note: The values within the parentheses are the estimated variances o,> when outliers

are ignored.

In the above table, the reduction percentages in error variances obtained from
model (4.6.2) is higher than those obtained from model (4.6.3) and the difference
between the reduction percentages is 22.47%. At the same time, by detecting less
number of outliers model (4.6.3) gives a more parsimonious model.

For the diagnostic checking of the fitted models, it is needed to check whether
the residuals are white noise or not. Thus, the characteristics of the ACF and PACF of
the residual series for the fitted models (4.6.2) and (4.6.3) are illustrated as in Figures
4.15 and 4.16 respectively.
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Figure 4.15 The ACF and PACF of Residual Series for Model (4.6.2)

From the above figures, it can be seen that the lag 1 ACF and PACF of the
residuals of model (4.6.2) do not lie within the confidence limits (+ 2 standard error)
at 5% level of significance. This indicates that the population autocorrelations cannot
be taken as zero and the residual series is not white noise. Based on the results of

these residual analyses, the model (4.6.2) is not adequate for the lima bean production

series.
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Figure 4.16 The ACF and PACF of Residual Series for Model (4.6.3)

From the above figures, it is clear that the residuals of model (4.6.3) do not
have any pattern and statistically significant since the estimated ACF of the residual
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series for model (4.6.3) lie within the confidence limits (+2 standard error) at 5%
level of significance. This indicates that the population autocorrelations can be taken
as zero and the residual series is white noise.

Besides, Box-Ljung Q statistic of the fitted model 15.319 is not significant at
5% level of significance. This means that the fitted model is adequate for the lima
bean production series. Based on the results of these residual analyses, the assumed
model (4.6.3) with an AO at t = 14 is found to be adequate for the observed data
series.

Moreover, model parsimony was also considered to be an important criterion
of analysis. Thus, we can conclude that the model (4.6.3) is more suitable by detecting
lesser number of outliers for the lima bean production series. Hence, the simultaneous

estimation of the parameters of the model is given by

Z,=4.813 + 3.249p" ﬁuTl%lgat (4.6.4)
(2.096) (0.570) (6.037)

with §Z = 0.658 where the values in parentheses below the parameter estimates are

the associated standard errors. As we have mentioned above, the fitted model (4.6.4)
with an AO at t = 14 (1963-64) gives us the smaller estimated variance than outlier
free model (4.6.1). Moreover, the outliers have an effect on the autoregressive
parameter, increasing from 0.934 to 0.961.

For lima bean production series, an AQ with positive sign at t = 14 is found in
1963-64, as can be seen in Figure 4.12. This pointed out that lima bean production
reached up to 7.4 thousand metric tons in 1963-64. The main cause of such a rise was
farmer's ability to grow lima bean extensively, due to more demand for that bean; they
grew more as the earned favorable price last year. Moreover, vermicelli makers in
Monywa District bought them a lot, and as lablab bean crop could not be grown in
time in some districts, lima bean were grown in place of lablab bean. Besides, the
State encoufaged the farmers to grow subsidiary crops, as there was wide availability
acreage of alluvial soil along the flooded river banks; they could extend their acreage,

and the plants got enough rain in that year, leading to a good harvest.




CHAPTER VY

FORECASTING AND FORECAST EVALUATION FOR
SELECTED ECONOMIC TIME SERIES WITH OUTLIERS

5.1 Forecasting and Forecast Evaluation

Forecasting is most often part of a larger process of planning and managing. It
is necessary to provide accurate estimates of the future for this larger process. A
forecast is a probabilistic estimate or description of a future value or condition. The
forecasting is clearly an important factor in planning and decision making. It also
plays a crucial role in business, industry, government and institutional planning
because many important decisions depend on the anticipated future values of certain
variables.

The most important aspect in the conduct of time series analysis is the use of
past and present data or available observations to predict future values. Usually, a
time series can be exactly predicted in which case it is considered to be deterministic.
However, most of the time series data encountered in real situations are stochastic in
nature in that the future values are only partially determined by past values. In this
case, exact predictions are impossible. Instead, future values are logically thought of
as having some probability distribution, which is based upon past values. The use of
available observations at time "t" to predict or forecast at some future time "t+L" can
serve many purposes of economic and business planning. As Nelson (1973) stated
"The better the forecasts available to management are, the better their performance as
measured by the outcomes of decision will be."

Forecasts for the time series data can be formed in various ways. The method
chosen depends on the purpose. Box and Jenkins (1976) demonstrated that forecasts
from ARIMA models are said to be optimal forecasts. This means that no other
univariate forecasts have a smaller mean-squared forecast error (MSE).

In this chapter, the minimum mean square error forecast for the fitted models
presented in Chapter IV are obtained together with their respective 95% lower and
upper confidence limits. These models can also be used to update forecasts when new
information becomes available. Moreover, the mean absolute percentage error
(MAPE) values are also computed for each of the fitted models to check accuracy of

the forecasts.
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5.2 Forecast Evaluation Measures

A model's forecast accuracy can be enhanced by measuring both absolute and
relative measures of error. But, the absolute measures such as mean of error (ME),
mean absolute deviation (MAD), sum of squared errors (SSE), mean squared errors
(MSE) and residual standard error (RSE) are very much dependent on the scale of the
dependent variable. Also, these absolute measures do not allow comparisons of results
over time or between time series. F ortunately, there are several relative measures of
forecast accuracy that facilitate model comparisons, including percentage error (PE),
mean percentage error (MPE) and mean absolute percentage error (MAPE) which can
be computed using the following formulas

PE= S %100
A

t

MPE = lz(:—')xwo

n o\ Ay

ni\ A,

MAPE:iZ":(ﬂ]xloo.

where n = number of periods

e; = forecast error

A¢ = actual value

t = some time period.

The PE measures the ratio of the error to actual and the MPE is the mean or
average of the PE's. Just as is true for the ME, the MPE should typically be near zero
as positive errors are offset by negative errors. In contrast, absolute values of errors
are used in the MAPE; thus, positive and negative errors do not offset each other.
Thus, the ME and MPE do not measure error scatter like MAPE.

The MAPE is a sum of the absolute errors for each time period divided by the
actual value for the period this sum is divided by the number of periods to obtain a
mean value. Then, by convention, this is multiplied by 100 to present it in percentage
terms. This is a simple measure permitting comparison across different forecasting
models with different time periods and number of observations and weighting all
percentage error magnitudes the same. Lower MAPE values are preferred to higher

ones because they indicate a forecasting model is producing smaller percentage errors.
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Moreover, its interpretation is intuitive. The MAPE indicates, an average, the
percentage error a given forecasting model produces for a specified period. Lewis
(1982) suggested that a MAPE of less than 10% is considered highly accurate
forecasting, a MAPE in the range 10% to 20% is good forecast, a MAPE between
20% and 50% is reasonable forecast and a MAPE of greater than 50% is considered
as inaccurate forecasting.

Delurgio (1998) said that when using percentages or ratios, it must be cautious
because extremely small denominators can yield extremely high percentages or ratios.
This problem is prevalent in forecasting whenever the actual values are very low.
Thus, percentage measures have to be monitored for low denominators. Although
such low actual values may be outliers and therefore should be adjusted, frequently
they are not.

Pankratz (1983) suggested that MAPE is useful for conveying the accuracy of
a model 'to managers or other non-technical users. He also stated that the MAPE
roughly suggests the kind of accuracy that can be expected from forecast produced by
fitted model. However, the preferred way of conveying forecast accuracy is to derive

confidence interval for the forecast values.

5.3  Minimum Mean Square Error Forecast
To derive the minimum mean square error forecasts, consider the general
stationary ARMA (p, q) model
¢(B)Z, =0(B)a, (5.3.1)
where ¢ (B)=1-¢1B-¢, B’ -...-¢,B’and 0 (B) =1-6,B - 0,B - . .. - 0, Bare
polynomials of degree pand qin B, ¢;,i=1,2,... ,pand 6; j=1,2,..., qare the
autoregressive and moving average parameters of the time series respectively and B is
the backward shift operator, that is, B’ Zy = Z4; . In the above model, a, is the white
noise or error series with mean zero and variance caz referred to as the error variance.
Because the model is stationary, it can be written in moving average
representation,
Z, =y(B)a,

Ta tya, s, +. (5.3.2)
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where
o, pi - 8B) «
y(B)=) y;B’ = (5.3.3)
,-; T 4®)
and y,=1. Fort=n+L, we héve
Zoir = 2V BnsLj- (5:34)

=0

Suppose at time t = n we have the observationsZn,Zn-1,Zn-2,- - - and wish to
forecast L-step ahead of future value Z .+ as a linear combination of the
observations Z n, Z n-1, Zn2, . - . . Since Z for t=n,n-1,n-2,...can all be

written in the form of Equation (5. 3. 2), let the minimum mean square error

forecast Zn (L)of Z a+Lbe

zn @L)=y'La.+ Y an+ yioant... (5.3.5)

where \V‘j are to be determined. The mean square error of the forecast is

L1 ©
E[Zn+L-Z, L)’ = ciZw? + G§Z[WL+j _WL+j]29
30 p

. . . .« . - L
which is easily seen to be minimized when v ,;= y,;. Hence,

Zn L)=yrantyraanityraanz+. . . (5.3.6)

By using Equation (5. 3. 4) and the fact that

7 7 3=l % 320
" n—lr")_ an+j’ jSO: ’

E(Zn+L1Zn Ly i) =LA, WL T W8, T

E(a n+j

Then

Thus, the minimum mean square error forecast of Z 4 + . is given by its conditional

expectation. That is,

Z, Ly =EZp)|Z0sZ 15 . (5.3.7)

Zn (L) is the L-step ahead forecast of Zq... at the forecast origin n.

The forecast error is

. L-1
e(L)=Zp —Z,(L)=D Wiap, - (5.3.8)
=0
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Because E[en(L) | Z 1, t < n] = 0, the forecast is unbiased with variance
L1
VIZ,(L)] = Ve, (L] =03 v - (53.9)
=0
If the random shocks a('s are normally distributed and if it has been estimated
an appropriate model with a sufficiently large sample, forecasts from that model are
approximately normally distributed. Therefore, confidence intervals around each point
forecast using a table of probabilities for standard normal deviations can be
constructed. Thus an approximate (1-0)100% confidence interval for the forecast is

given by
. L1 2
Z,(L)EN,,[1+ D v} | o, (5.3.10)
j=l

where N, is the standard normal deviate such that P(Z>Z,,,,) = % .

5.4  Forecasting Each Data Series with Fitted Models

The adequately fitted models presented in Chapter IV were used in
forecasting. In this section, the minimum mean square error forecasts for the fitted
models are obtained together with their respective 95% confidence intervals. The
forecast values for five years ahead, that is from 2006-2007 to 2010-2011 are also
computed and presented together with their respective 95% lower and upper

confidence limits for each data series.

5.4.1 Base Metal and Ores Export Series
The fitted AR(1) model with an IO at t = 32 and two AO'satt=40 and t = 44
for base metal and ores export series is given by

1
1-¢B

where the estimated parameters are 6y = 28.076, ¢ = 0.773, @ = 36.360, w; =
24.547 and o3 = -21.453 with o2 = 72.063.

Using the observations Z;; t =1, 2, .....,51 (from 1955-1956 to 2005-2006), the
forecast valuues Zs>(2006-2007), Zs3(2007-2008), Zs4(2008-2009), Zs5(2009-2010)
and Zs56(2010-2011) with their 95% lower and upper confidence limits are to be

obtained. The procedure is as follows:



The above fitted AR(1) model with 3 outliers can be rewritten as

(1-0B)(Z - 60) = 0P + (1-0B) 0P ? + 03P ™ T+ &

and the general form of the forecast equation is

(Zs-00) - & (Zea - 00) = 01PE? + (1-¢B) 0P ? + 03P 1+ 2,

(Zi - 60) = (Ze1 - 80) + 0 PP + (1-6B)[02P 7 + 03P *] + 2,

7.(L) =80+ [Z, (L - 1) - 801+ + (1-4B)[ wP( P + 3P ]

= 00(1 - §) + 9" Ze + 0 1PEP+ 0P+ 03P - P - gosP*) S L 21

where L is the lead time.

Then, the (1 - «) 100% forecast limits are computed using the formula in
Equation (5.3.10). Thus, the forecast values for Zs (2006 - 2007), Zs3 (2007- 2008),
Zss (2008 - 2009), Z55(2009-2010), Zs5(2010-2011) and their 95% lower and upper

forecast limits are obtained as follows:

for Base Metal and Ores Exports Series

Table (5.1)

Forecast Values and their 95% Forecast Confidence Limits

(5.4.1)

Time Point

Year

Forecast

Lower Limits

Upper Limits

t=352
t=353
t=>54
t=355
t=56

2006-07
2007-08
2008-09
2009-10
2010-11

29.57
29.24
28.98
28.78
28.62

13.82
9.33
6.97
5.60

4.78

45.32
49.14
50.99

51.96
52.47

For base metal and ores exports series, the forecast values and their 95%

forecast confidence limits are plotted in Figure 5.1.
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Figure 5.1  Plot of Forecast Values and their 95% Confidence Limits

for Base Metal and Ores Exports Series

5.4.2 Teak Export Series

For the teak export series, the fitted AR(1) model with an AO at time t = 24 is

obtained as

1
Z, =0, +0 P +—— a
1-¢B

where the estimated parameters are 0, = 163.201, ¢ = 0.932 and ©, = 88.921

with 2= 1226.86.

Based on the observations for teak export, Z;; t=1,2,...,51 (from 1955-
1956 to 2005-2006), the forecast values Z52(2006-2007), Zs53(2007-2008), Z54(2008-
2009), Zs5(2009-2010) and Zs6(2010-2011) with their 95% lower and upper

confidence limits are to be computed. Then, the procedure is as follows:

The above fitted AR(1) model with an AO outlier can be written as
| (1-9B)(Zi-00) =(1 - ¢B) 0P + a,
(Z:-80) - ¢ (Ze1 - 80) = (1 - $B) 0, P*Y + 4,
Zi-60=0 (Ze1-60) +(1-B) o P +a,

Z:=00+ ¢ (Ze1-080) +(1-¢B) o P +a




110

and the general form of the forecast equation is
Z,(L) =60+ [Z,L-1)-0] +(I-9B) P
=00 (1-9¢)+¢"Z+ 0P - 0, P ;L >1 (5.4.2)
where L is the lead time.
Then, the (1 - a) 100% forecast limits are calculated using the formula in
Equation (5.3.10). Thus, the forecast values for Zs(2006-2007), Zs3(2007-2008),
Z54(2008-2009), Z55(2009-2010) and Zs6(2010-2011) as well as their 95% lower and

upper confidence limits are obtained as in the following table.

Table (5.2)
Forecast Values and their 95% Forecast Confidence Limits

for Teak Export Series

Time Point Year Forecast | Lower Limits | Upper Limits
t=52 2006-07 | 321.51 257.28 385.75
t=153 2007-08 310.80 222.98 398.62
t=154 2008-09 300.81 196.74 404.88
t=55 2009-10 291.50 175.14 407.86
t=56 20i0-1 1 282.82 156.74 408.90

For teak export series, the forecast values and their respective 95% forecast

confidence limits are plotted in Figure 5.2.
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Figure 5.2  Plot of Forecast Values and their 95% Confidence Limits
for Teak Export Series

5.4.3 'Wheat Production Series

The fitted AR(1) model with an 10 at t = 34 and an AO at t = 29 for wheat
production series is given by

1

34
- 0B [mlPt( ) + a, ]+ o)th(zg)

Z,=0,+

where the estimated parameters are 0, = 64.839, ¢ = 0.936, 0, = 86.220 and
o = -49.744 with o2 =287.981.

From the observations on wheat production Z; ; t =1, 2, .....,56 (from 1950-
1951 to 2005-2006) and the forecast values Zs; (2006-2007), Zsg (2007-2008), Zso
(2008-2009), Z0(2009-2010) and Z¢(2010-2011) with their 95% lower and upper
confidence limits are to be obtained. Then, the procedure is as follows:

The above fitted AR(1) model with 2 outliers can be rewritten as
(1-0B)(Z - 85) = 0P + (1-6B)[ 00,P ™1+ a,
(Z: - 00) - ¢ (Ze1 - 8p) = 01PY + (1-0B)[ 0P )]+ a,
(Z: - 00) = ¢ (Ze1 - 60) + 0 PV + (1-¢B)[w2P P+ 2,

7, = 05+ (Ze.1 - 80) + 01 P3P + (1-9B)[@2P P+ a

— Observed

—Forecast
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and the general form of the forecast equation is
7.(L)= B+ ¢ [2,(L - 1)- 001 +0PE? + (1-4B) 0P
=00 (1 - ) + 6" Zi + @, PP+ 0P - g0;P ) 5 L21 (5.4.3)
where L is the lead time.

Then, the (1 - o) 100% forecast limits are computed using the formula in
Equation (5.3.10). Thus, the forecast values for Zs7(2006-2007), Zsg(2007-2008),
Z59(2008-2009), Z6o(2009-2010), Ze1(2010-2011) and their 95% lower and upper
forecast limits are obtained as follows:

Table (5.3)

Forecast Values and their 95% Forecast Confidence Limits

for Wheat Production Series

Time Point Year Forecast | Lower Limits | Upper Limits
t=57 2006-07 148.0 117.2 178.9
t=58 2007-08 142.7 100.5 185.0
t=59 2008-09 137.8 87.6 188.0
t=60 2009-10 138.5 823 194.7
t=61 2010-11 133.8 72.8 194.8

For wheat production series, the forecast values and their 95% forecast

confidence limits are plotted in Figure 5.3.
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Figure 5.3  Plot of Forecast Values and their 95% Confidence Limits

for Wheat Production Series

5.4.4 Lablab Bean Production Series

For the lablab bean production series, the fitted AR(1) model with an AO at

time t = 30 is obtained as

Z =6,+ o P +—1—at
1-¢B

where the estimated parameters are 6y = 48.387, ¢ = 0.976 and o, = 24.558

with ;= 49.546.

Using the observations on lablab bean production, Z;; t =1, 2,...,56 (from
1950-1951 to 2005-2006) and the forecast values 757(2006-2007), Zs3(2007-2008),
Z56(2008-2009), Z60(2009-2010) and Ze(2010-201 1) with their 95% lower and upper

confidence limits are to be computed. Then, the procedure is as follows:

| The above fitted AR(1) model with an AO outlier can be written as
(1 - 9B)(Z: - 8p) =(1-¢B) 0P + a
(Z:-80) - ¢ (Zo1 - 80) = (1 - ¢B) 01 PCY + a
Zi-00=0 (Zo1-00) +(1-0B) P& +a

Z,=00+ ¢ (Ze1-08) +(1-¢B) P80 + g,
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and the general form of the forecast equation is
7.(L) =00+ [Z,@L-1)-0] +(1-¢B) P
=09 (1 - §) + 4" Zi+ 0 PCY - p0: P ; L1 (5.4.4)
where L is the lead time.
Then, the (1 - a) 100% forecast limits are calculated using the formula in
Equation (5.3.10). Thus, the forecast values for Zs7(2006-2007), Zs5(2007-2008),
Z55(2008-2009), Zo(2009-2010) and Z¢1(2010-2011) as well as their 95% lower and

upper confidence limits are obtained as in the following table.

Table (5.4)
Forecast Values and their 95% Forecast Confidence Limits

for Lablab Bean Production Series

Time Point Year Forecast | Lower Limits | Upper Limits
t=57 2006-07 89.6 77.5 101.7
t=358 2007-08 88.6 71.7 105.6
t=59 2008-09 87.7 67.2 108.2
t=60 2009-10- 86.8 63.4 110.2
t=61 2010-11 85.9 60.0 111.7

For lablab bean production series, the forecast values and their respective 95%

forecast confidence limits are plotted in Figure 5.4.
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Figure 5.4  Plot of Forecast Values and their 95% Confidence Limits
for Lablab Bean Production Series

5.4.5 Lima Bean Production Series

For the lima bean production series, the fitted AR(1) model with an AO
at time t = 14 is given by
1

Zt = 60 +0)1P[(l4) +l—_—$§a[
where the estimated parameters are 6 = 4.813, ¢ = 0.961 and o; = 3.249 with
62=0.658.
Based on the observations for lima bean production, Z;;t=1,2, ..., 56

(from 1950-1951 to 2005-2006) and the forecast values Z57(2006-2007), Zs3(2007-
2008), Z59(2008-2009), Z0(2009-2010) and Z4(2010-2011) with their 95% lower and

upper confidence limits are to be computed. Then, the procedure is as follows:

The above fitted AR(1) model with an AO outlier can be written as
(1 - dBYZ: - 8p) =(1 - ¢B) /P! +a
(Zi-00) - & (Zi1 - 80) = (1 - B) 0 P + 2,
Zi-00=0(Z1-00) +(1-9¢B) 0P +a

Z.=00+ 0 (Ze1-00) +(1-0B)wP!'Y+a
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and the general form of the forecast equation is
Z,(@L)=0+¢[Z,(L-1)-6] +(1-¢B)a P
=0 (1-¢)+¢" Z + 0P - p0, P ; L1 (5.4.5)
where L is the lead time.
Then, the (1 - o) 100% forecast limits are calculated using the formula in
Equation (5.3.10). Thus, the forecast values for Zs7(2006-2007), Zs(2007-2008),
Z50(2008-2009), Z60(2009-2010) and Z;(2010-2011) as well as their 95% lower and

upper confidence limits are obtained as in the following table.

Table (5.5)
Forecast Values and their 95% Forecast Confidence Limits

for Lima Bean Production Series

Time Point Year Forecast | Lower Limits | Upper Limits
t=157 2006-07 7.6 6.0 9.2
t=58 2007-08 7.5 53 9.7
t=59 2008-09 74 4.7 10.0

t=60 | 2009-10 73 43 103
t=61 2010-11 7.2 3.9 10.5

For lima bean production series, the forecast values and their respective 95%

forecast confidence limits are plotted in Figure 5.5.
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Figure 5.5  Plot of Forecast Values and their 95% Confidence Limits

for Lima Bean Production Series

5.5  Forecast Evaluation for Fitted Models
The mean absolute percentage error (MAPE) values for the models fitted to

each series are computed to evaluate the performance of the model fitted to each data

series and they are presented in the following table.

Table (5.6)
The MAPE Values for the Fitted Models
Series MAPE
1. Base Metal and Ores Export 31.014%
2. Teak Export .~ . 18.692%
3. Wheat Production 31.968%
4, Lablab Bean Production 15.104%
5. Lima Bean Production 22.875%

According to Table (5.6), it can be seen that the MAPE values of the fitted
models for teak export series and lablab bean production series are less than 20%.

Therefore, the forecast values for these two series are generally considered to be

w3
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good. Since the MAPE values of the fitted models for base metal and ores export
series, wheat production series and lima bean production series lie between 20% and
50%, it can be concluded that forecast values from the fitted models to these three
series are generally considered to be reasonable.

The control charts for the fitted model for each data series in this study are
presented in Appendix C, Figure C1 to CS5. They suggest that the fitted values lie
between 95% upper and lower confidence limits and those values fluctuate around
with original values for all observed data series in this study. Thus, the fitted model
for each data series selected in this study fits the corresponding data sufficiently well
and they can give short-term forecasts.

The forecasts for five years ahead (from 2006-2007 to 2010-2011) are also
presented in Tables (5.1) to (5.5) and plotted in Figures 5.1 to 5.5 together with their
95% upper and lower prediction limits. It is also observed that all the forecast values
fall within the 95% upper and lower confidence limits of the each of the forecast
values for all observed series in this study. Therefore, the forecast values are generally
considered to be acceptable.

Moreover, the forecast values for one year ahead, that is, for the year 2006-
2007 together with actual values for the same period are also presented in the
following table since the actual values of the data series selected in this study become
available. This was done to compare the actual and forecast values and thereby
provide the bases for evaluating the adequacy of the forecast values in presenting data

series to which they have been fitted.

Table (5.7)
Forecasts, Actual Values and 95% Upper and Lower Confidence Limits
for 2006-2007
Series Forecast | Actual | Lower Limit | Upper Limit

1. Base Metal and Ores Export | 29.57 27.0 13.82 4532

2. Teak Export 321.51 347.0 257.28 385.75

3. Wheat Production 148.0 140.2 177.2 178.9

4. Lablab Bean Production 89.6 93.2 71.5 101.7

5. Lima Bean Production 7.6 9.1 6.0 9.2
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Results for forecasting presented in Table (5.7) shows that differences
between actual and forecast values for the same period are moderate in all data series.
Even if there are some differences between actual and forecast values, all forecast
values and all actual values fall within the upper and lower confidence limits of each

of the forecast values for all data series which are analyzed in this study.




CHAPTER VI

CONCLUSION

The analysis of time series data becomes very complex when the included
values are not typical of the past or future. These non-typical values are known as
outliers, which are very large or small observations that are not indicative of repeating
past or future patterns. Outliers in an economic time series include deviations that
occur because of unusual events such as policy changes, environmental regulations,
economic changes, advertising promotions, supply interruptions, natural disasters,
wars, strikes and similar events. However, in many practical situations, the causes and
timing of occurring outliers may be unknown.

Outliers may exist in economic time series data and can at least theoretically
have harmful effects on their analysis. It is difficult to say that how frequently outliers
are occurred and which is the best way to describe them (that is, additive or
innovational outlier or others), how serious a threat they pose in practice, and how to
handle them or indeed whether anything at all should be done about them.

In practice, the presence of outliers is assumed as indicated in the graph at the
start of analysis, additional procedures for detection of outliers and assessment of
their possible impacts are very essential. We should stress the importance of adjusting
outliers prior to and during the analysis of time series data. Even more emphasis
should perhaps be placed on examining and explaining the possible causes of detected
outliers in the observed data.

In time series, outliers can take several forms. Fox (1972) early gave the
formal definition and classification of outliers in a time series. He proposed a
classification of type I and type II outliers based on an autoregressive model. These
two types have later be renamed as additive outlier (AO) and innovational outlier (I0)
and these two types of outliers are focused in this study.

An AO only affects a single observation of a time series, which is either larger
or smaller in value than expected. In contrast, IO affects several subsequent
observations in a time series. But, AO's are the most troublesome whereas IO's often
have lesser effect than AO's. Moreover, an IO only affects one residual of the series.
On the other hand, an AO affects the next consecutive residuals in the series as well.

This effect has several consequences for any further analysis of the residuals and the
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error variance will also be inflated and more alarmingly, the outlier may create a
pattern into the residuals (Tolvi, 1998).

The presence of such outliers in a time series can also have substantial effects
on the mean and variance of the series. The impact of presence of a single outlier on
the series mean and variance is investigated based on AR(1), MA(1) and ARMA(1,1)
series using simulated data. It is observed that the larger the magnitude of outlier, the
higher the mean and variance are obtained. Besides, it is found that the effect of IO on
mean is much more significant for both AR(1) and ARMA(1,1) series but the effect of
AO on the mean is much more prominent for MA(1) series. In addition, it is also clear
that the effect of IO on the variance is much more obvious than that of AO for both
AR(1) and MA(1) as well as ARMA(1,1) cases. Moreover, it can be concluded that
the effect of outlier on mean and variance depends on both magnitude and type of
outliers.

In time series, outliers can affect on ARMA model identification, estimation
and forecasting. First of all, outliers affect the autocorrelation structure of a time
series and therefore they also bias the autocorrelation function (ACF) and partial
autocorrelation function (PACF). These biases can be severe and they depend on,
besides the obvious attributes like the type and magnitude of outliers, also the
underlying model and its autocorrelation structure. (Detsuh, Richards, and Swain;
1990). ARMA model identification is traditionally based on the ACFand PACFand
will in the presence of outliers therefore be misleading, unless outliers are somehow
taken into account (Tolvi, 1998). From the simulated results, it is found that the
estimated value of lag-1 autocorrelation p; does not change significantly for 10 case
of both AR(1) and MA(1) series. However, the estimated value of p) decreases as the
value of outlier parameter increases for AO case of both AR(1) and MA(1) series. For
ARMA(1,1) series, estimated value of p; decreases as the value of outlier parameter
increases for both AO and IO cases. But, the effect of p; is much more obvious in the
case of AO than that of IO for ARMA(1,1) series. The same conclusion can be made
for the effect of outlier on the PACF since the values of both lag-1 autocorrelation p;
and lag-1 partial autocorrelation ¢y are identical for AR(1), MA(1) and ARMA(1,1)
series. It can also be concluded that the effect of the presence lof a single outlier on the
estimates of ACFand PACF depends on both the magnitude and type of outliers for
the underlying models of AR(1), MA(1) and ARMA(1,1).
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Similarly, outliers bias the estimated ARMA model’s parameters and
estimated error variances as well. Chang and Tio (1983), Chen and Liu (1993)
suggested that the AO outliers cause substantial biases in estimated ARMA
parameters, whereas I0’s have only minor effects. Ledolter (1989) also stated that
outliers inflate the estimated error variance of the series. Based on the simulated |
results, it is found that estimated parameters (that is, ¢ and 6 for AR(1) and MA(1),
respectively) do not vary significantly with change in the magnitude of outlier
parameter for the case of 10 of both AR(1) and MA(]) series. However, it is also clear
that the estimated values of parameters ¢ and © decrease with the increasing
magnitude of outlier parameter for the AO case of AR(1) and MA(1) series,
respectively. For ARMA(1,1) series, it is also observed that the estimated values of
autoregressive parameter ¢ do not differ significantly with the change in the
magnitude of outlier for both AO and IO cases. But, the estimated values of moving
average parameter 0 do not vary obviously with the increasing magnitude of outlier
parameter in the IO case whereas the estimated values of moving average parameter
0 decrease noticeably with the increasing magnitude of outlier parameter in the AO
case of ARMA(1,1) series.

According to simulated results, it can also be seen that the error variance tends
to get overestimated with the larger values of outlier parameter for both AR(1) and
MA(1) as well as ARMA(1,1) cases, irrespective type of outlier. This overestimation
is more prominent in the AO than that of IO for both AR(1) and MA(1) as well as
ARMAC(1,1) series. In addition, it is also found that the effect of presence of outlier of
either type on error variance is much more than that on the estimated parameters for
these series. Besides, it can be concluded that the effect on the estimates of time series
parameters as well as the error variance depends on both magnitude and type of

outlier.

Outliers can also affect on the model selection criteria including (Akiake’s
Information Criterion) AIC and BIC (Baye's Information Criterion) as well as they
can bias the selection of the model because the computation of AIC and BIC based on
the estimated error variance. From the simulation study, it is observed that the
increasing values of AIC and BIC are obtained as the values of outlier parameter

become larger and the effect of outlier on both AIC and BIC is also much more
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significant in the case of AO than that of 10 for both AR(1) and MA(1) as well as
ARMAC(1,1) series.

The presence of a single outlier can result in a true AR model being falsely
identified as a MA or an ARMA model, and that the identified lag length (p and q)
can also be misspecified. The simulated results also suggest that the percentage of
correct model selection declines as the value of outlier parameter increases in the AO
case whereas it is not true in the IO case of both AR(1) and MA(1) series. It can also
be concluded that the effect of AO is more serious for both AR(1) and MA(1) models
identification but the effect of 10 is not as clear as that of AO.

Besides, the existence of outilers in a time series can affect on the time series
model building stages such as model identification, parameter estimation, diagnostic
checking and forecasting. Thus, the investigation into the presence of outliers,
detection of position of outliers, identification of type of outlier, estimation of
parameters in the presence of outliers, assessment of their effects on the analysis and
the remedial measures to accommodate the outliers is a crucial aspect of time series
analysis.

For detection of outliers, simple statistical tools such as time series plots,
frequentcy distributions and simple t-tests can be used. These methods are simple and
perhaps useful in some cases, but obviously not sufficient for the wide variety of
situations encountered in empirical time series analysis. It is therefore necessary to
consider more complicated but effective methods and some of these are presented in
the present study. The methods described are classified as likelihood ratio test,
influence function method, Q statistics, leave-k-out diagnostics and likelihood
displacement for outlier diagnostic.

In Myanmar, many economic time series were affected by events that are
planned by decision makers and caused by economic changes, weather conditions,
out-of-stock situations, competitors and similar events. This study attempts to detect
the timing of the presence of outliers, identifies the type of outliers in selected
economic time series of Myanmar and also explains the possible causes of occurrence
of such outliers in each observed data series. In the detection and estimation of
outliers, this study focuses only on the applications of likelihood ratio test (LRT)
using SPSS software and adjustment diagnostics based on error variance (ADV)
procedure using STDS software. Then, using SPSS software, ARIMA models with

outliers are constructed for selected economic time series and the future values for
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five years ahead are forecasted based on the fitted models which could be useful in
decision-making and planning purposes.

For detection of outliers in selected economic time series of Myanmar, the
following ARIMA models with outliers are obtained.

1) AR(1) model with an IO outlier at t = 32 and two AO outliers at t = 40 , 44 for
base metal and ores export series

(2)  AR(1) model with an AO outlier at t = 24 for teak export series

3) AR(1) model with an AO outlier at t = 29 and an IO outlier at t = 34 for wheat
production series

(4)  AR(1) model with an AO outlier at t = 30 for lablab bean production series

(5)  AR(1) model with an AO outlier at t = 14 for lima bean production series

To evaluate_the forecast values, the MAPE values for the model fitted to each
data series are also computed. Since the MAPE values for all data series are less than
50%, the forecasts obtained from the fitted models are considered to be accurate.

The estimated values and their 95% upper and lower prediction limits as well
as the actual values for the studied periods of each observed data series are presented.
In addition, the control charts for fitted model to each data series are also presented to
see if the estimated 95% confidence interval contains the actual values. They suggest
that the fitted values fall between 95% lower and upper confidence limits and those
values fluctuate near the original values for all observed data series in this study. The
forecast values for five years ahead (from 2006-2007 to 2010-2011) are also
computed together with their 95% upper and lower confidence limits. It is also found
that all forecast values fall between their 95% upper and lower confidence limits of
each of the observed series.

The effect of changes in the economic time series due to special events can be
analyzed by statistical outlier analysis in order to provide the timings and the types of
outliers to be useful in future planning. In doing so, the application of only one
procedure for outlier detection is not enough and it is also suggested to use two or
more detection methods to get more satisfactorily results.

This study focuses only on two types of outliers, namely, additive outlier (AO)
and innovational outlier (I0) which can occur most often in practical time series. In
furture researches, the effects of other types of outliers such as level shift (LS),
temporary change (TC), variance change (VC) and reallocation outlier (RO) should be
studied by suitable outlier detection procedures.
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The detection of outliers can also be extended for seasonal time series models
if it is possible for monthly or quarterly time series data. Furthermore, the detection of
outliers in multivariate time series should be investigated as a further study. It is also
recommended that the outlier detection and model fitting should be studied regularly

in order to have better estimates or forecasts.
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APPENDIX A

Akaike’s Information Criterion (AIC)

Assume that a statistical model of M parameters is fitted to data. To assess the
quality of the model fitting., Akaike (1973) introduced an information criterion. The
criterion has been called Akaike’s Information Criterion (AIC) in the literature and is

defined as
AIC=nlné. +2M

where M is the number of the parameters in the fitted model, n is the number of residuals
that can be calculated from the series and 6 is the maximum likelihood estimate of the

error variance 032 . The optimal order of the model is chosen by the value of M, which is

a function of p and g, so that AIC is minimum.
Bayesian Information Criterion (BIC)

Shibata (1976) has shown that the AIC criterion tends to overestimate the order of
autoregression. More recently, Akaike (1978) has developed a Bayesian extension of the
minimum AIC procedure, called Bayesian Information Criterion (BIC), which takes the

following form:

(&

M

Q>
N O

BIC=nlng!? -—(n—M)ln(l——1\£)+Mlnn+MZ In
n

_ -

where M is the number of the parameters in the fitted model, n is the number of residuals

that can be calculated from the series, &2 is the maximum likelihood estimate of the error
a

variance o,> and 62 is the sample variance of the series. Through a simulation study

Akaike (1978) has claimed that the BIC is less likely to overestimate the order of the

autoregression.
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APPENDIX B

Table (B. 1)

Selected Economic Time Series with Outliers

Base Metal and Teak Wheat Lablab Bean Lima Bean
Years Ores Export Export Production Production Production
(thousand (thousand (thousand (thousand (thousand
metric ton) cubic ton) metric ton) metric ton) metric ton)
1950-51 9.5 22.5 6.2
1951-52 10.6 22.4 6
1952-53 10.4 222 6.4
1953-54 9.6 18 7
1954-55 8.8 229 7.2
1955-56 57 57 10.1 30.7 6.4
1956-57 51 66 10.7 29.4 4.1
1957-58 58 66 10.9 22.4 4.2
1958-59 57 71 10.7 23.8 5
1959-60 44 91 9.7 20.3 2.5
1960-61 30 92 7.3 25.6 3.1
1961-62 35 121 20.7 36 4.8
1962-63 38 146 31.9 36 5.4
1963-64 36 154 53.4 32.2 7.4
1964-65 31 140 70.6 21 2.9
1965-66 32 135 94.8 20.1 22
1966-67 23 100 65.7 17.8 1.8
1967-68 18 110 50.3 22 1
1968-69 20 130 25.4 29.5 0.9
1969-70 13 112 25.4 33 0.9
1970-71 15 124 32.9 31.1 1.1
1971-72 16 120 26.5 31.1 0.9
1972-73 17 119 26.3 26.8 0.8
1973-74 4 67 243 344 0.5
1974-75 19 103 62.6 35.6 0.6
1975-76 11 101 55.7 30.7 0.6
1976-77 9 77 75.2 44.6 0.7
1977-78 10 84 922 46.1 07 |
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1978-79 15.7 182.6 41 394 0.8
1979-80 11.3 103 894 63.8 0.7
1980-81 16.2 138.6 114.9 39.1 0.7
1981-82 17.7 144.9 122 43.8 0.7
1982-83 20.8 139.2 128 43.8 0.7
1983-84 33 184 210.2 58.5 0.6
1984-85 38.7 183.1 203 49.6 0.8
1985-86 30.1 168.1 186.9 43.7 1

1986-87 66 150.7 188.7 45.5 1

1987-88 53 121 154.4 38.9 1.1
1988-89 25 148 128.1 30.5 1

1989-90 28 229 122.2 35.7 1.2
1990-91 33 252 121.5 40 1.2
1991-92 33 172 141.1 32.8 1.2
1992-93 22 199 136.4 35.9 2.7
1993-94 25 220 106.9 41.4 1.8
1994-95 54 150 81.7 38.7 1.8
1995-96 34 117 76.7 44.5 2.1
1996-97 16 138 85.4 45.1 23
1997-98 26 138 90.7 43 3.6
1998-99 8 172 92 50.3 5.1
1999-00 33 234 115.3 54.4 5.2
2000-01 37 218 92.1 63 4.7
2001-02 42.5 200 94.4 62.1 5.1
2002-03 35 205.6 105.7 67.9 6.4
2003-04 30.8 281.1 122.4 74.7 7.4
2004-05 328 319.2 150 78.7 6.8
2005-06 29.7 333.1 156.2 90.6 7.7

Source: Report to the People (1964-1965 to 1979-1980)
Report to the Phyithu Hluttaw (1971-1972 to 1988-1989)
Review of Financial, Economic and Social Conditions (1989-1990 to 1997-1998)
Selected Monthly Economic _ln_dicatérs (1955-2008)
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Table (B. 2)

Estimated Values and Their 95% Lower and Upper Confidence Limits
of the Fitted Model for Base Metal and Ores Export Series: 1955-1956 to 2005-2006

Year Estimates Lower Limit | Upper Limit
1955-56 30.4332 4.3484 56.5179
1956-57 52.6756 38.4111 66.9402
1957-58 47.6523 33.3877 61.9168
1958-59 53.5129 39.2483 67.7774
1959-60 52.6756 384111 66.9402
1960-61 41.7917 27.5271 56.0563
1961-62 30.0705 15.8059 443351
1962-63 34.2566 19.9921 48.5212
1963-64 36.7683 22.5038 51.0329
1964-65 35.0939 20.8293 49.3584
1965-66 30.9077 16.6432 45.1723
1966-67 31.7450 17.4804 46.0095
1967-68 24.2099 9.9453 38.4745
1968-69 20.0238 5.7592 34.2884
1969-70 21.6982 7.4337 35.9628
1970-71 15.8376 1.5731 30.1022
1971-72 17.5121 3.2475 31.7767
1972-73 18.3493 4.0848 32.6139
1973-74 19.1866 4.9220 33.4511
1974-75 8.3026 -5.9620 22.5672
1975-76 20.8610 6.5964 35.1256
1976-77 14.1632 -0.1014 28.4278
1977-78 12.4887 -1.7758 26.7533
1978-79 13.3260 -0.9386 27.5905
1979-80 18.0982 3.8336 32.3627
1980-81 14.4144 0.1498 28.6789
1981-82 18.5168 42522 32.7813




1982-83 19.7726 5.5080 34.0372
1983-84 22.3680 8.1034 36.6326
1984-85 32.5822 18.3176 46.8468
1985-86 37.3544 23.0898 51.6189
1986-87 66.0000 51.7354 80.2646
1987-88 60.2107 45.9461 74.4752
1988-89 25.0000 10.7354 39.2646
1989-90 25.8844 11.6198 40.1489
1990-91 28.3961 14.1315 42.6606
1991-92 32.5822 18.3176 46.8468
1992-93 32.5822 18.3176 46.8468
1993-94 23.3727 9.1081 37.6373
1994-95 50.3708 36.1062 | 64.6354
1995-96 29.6632 15.3987 43.9278
1996-97 33.4194 19.1548 47.6840
1997-98 18.3493 4.0848 32.6139
1998-99 5.2078 -9.0568 19.4724
1999-00 29.6634 15.3989 43.9280
2000-01 32.5822 18.3176 46.8468
2001-02 35.9311 21.6665 50.1957
2002-03 40.5358 26.2713 54.8004
2003-04 34.2566 19.9921 48.5212
2004-05 30.7403 16.4757 45.0049
2005-06 32.5822 18.3176 46.8468
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Table (B. 3)
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Estimated Values and Their 95% Lower and Upper Confidence Limits

of the Fitted Model for Teak Export Series: 1955-1956 to 2005-2006

Year Estimates Lower Limit | Upper Limit
1955-56 163.2008 -14.4451 340.8466
1956-57 64.1856 -0.0484 128.4197
1957-58 72.5767 8.3426 136.8107
1958-59 72.5767 8.3426 136.8107
1959-60 77.2384 13.0043 141.4724
1960-61 95.8852 31.6511 160.1192
1961-62 96.8175 32.5835 161.0515
1962-63 123.8553 59.6213 188.0894
1963-64 147.1638 82.9298 211.3979
1964-65 154.6225 90.3885 218.8566
1965-66 141.5698 77.3357 205.8038
1966-67 136.9081 72.6740 201.1421
1967-68 104.2762 40.0422 168.5102
1968-69 113.5996 49.3656 177.8336
1969-70 132.2464 68.0124 196.4804
1970-71 115.4643 51.2302 179.6983
1971-72 126.6524 62.4183 190.8864
1972-73 122.9230 58.6890 187.1570
1973-74 121.9907 57.7566 186.2247
1974-75 73.5090 9.2750 137.7430
1975-76 107.0732 42.8392 171.3073
1976-77 105.2085 40.9745 169.4426
1977-78 82.8324 18.5984 147.0664
1978-79 178.2795 114.0454 242.5135
1979-80 98.3832 34.1492 162.6172
1980-81 107.0732 42.8392 171.3073
1981-82 140.2645 76.0305 204.4985




1982-83 146.1382 81.9042 210.3723
1983-84 140.8239 76.5899 205.0579
1984-85 182.5927 118.3587 246.8267
1985-86 181.7536 117.5196 245.9876
1986-87 167.7685 103.5345 232.0025
1987-88 151.5458 87.3118 215.7798
1988-89 123.8553 59.6213 188.0894
1989-90 149.0285 84.7945 213.2625
1990-91 224.5480 160.3139 288.7820
1991-92 2459918 181.7577 310.2258
1992-93 171.4046 107.1706 235.6387
1993-94 196.5778 132.3438 | 260.8118
1994-95 216.1569 151.9229 280.3910
1995-96 150.8932 86.6591 215.1272
1996-97 120.1260 55.8919 184.3600
1997-98 139.7051 75.4711 203.9391
1998-99 139.7051 754711 203.9391
1999-00 171.4046 107.1706 235.6387
2000-01 229.2097 164.9756 293.4437
2001-02 214.2922 150.0582 278.5263
2002-03 197.5101 133.2761 261.7442
2003-04 202.7312 138.4972 266.9653
2004-05 273.1229 208.8888 337.3569
2005-06 308.4585 244.2245 372.6925
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Table (B. 4)

Estimated Values and Their 95% Lower and Upper Confidence Limits
of the Fitted Model for Wheat Production Series: 1955-1956 to 2005-2006

Year Estimates Lower Limit | Upper Limit
1950-51 64.8385 -23.0417 152.7188
1951-52 13.0219 -17.8282 43.8720
1952-53 14.0519 -16.7982 44.9019
1953-54 13.8646 -16.9855 44.7147
1954-55 13.1155 -17.7346 43.9656
1955-56 12.3664 -18.4837 43.2165
1956-57 13.5837 -17.2664 44.4338
1957-58 14.1455 -16.7046 44.9956
1958-59 14.3328 -16.5173 45.1829
1959-60 14.1455 -16.7046 44.9956
1960-61 13.2091 -17.6410 44.0592
1961-62 10.9619 -19.8882 41.8120
1962-63 23.5091 -7.3410 54.3592
1963-64 33.9963 3.1462 64.8464
1964-65 54.1280 23.2779 84.9781
1965-66 70.2333 39.3832 101.0834
1966-67 92.8932 62.0431 123.7433
1967-68 65.6452 34.7951 96.4953
1968-69 51.2253 20.3752 82.0754
1969-70 27.9100 -2.9401 58.7600
1970-71 27.9100 -2.9401 58.7600
1971-72 34.9326 4.0825 65.7827
1972-73 28.9399 -1.9101 59.7900
1973-74 28.7527 -2.0974 59.6028
1974-75 26.8800 -3.9701 57.7300
1975-76 62.7425 31.8924 93.5926
1976-77 56.2816 25.4315 87.1317
1977-78 74.5406 43.6905 105.3907
1978-79 40.7147 9.8646 71.5648

139



1979-80 89.0953 58.2452 119.9454
1980-81 87.8369 56.9868 118.6869
1981-82 111.7140 80.8639 142.5641
1982-83 118.3621 87.5120 149.2122
1983-84 210.2000 179.3499 241.0501
1984-85 200.9489 170.0988 231.7990
1985-86 194.2071 163.3570 225.0572
1986-87 179.1317 148.2817 209.9818
1987-88 180.8172 149.9671 211.6673
1988-89 148.7001 117.8500 179.5502
1989-90 124.0739 93.2238 154.9240
1990-91 118.5494 87.6993 149.3995
1991-92 117.8939 87.0439 148.7440
1992-93 136.2466 105.3965 167.0966
1993-94 131.8457 100.9956 162.6958
1994-95 104.2231 73.3730 135.0732
1995-96 86.2450 55.3950 117.0951
1996-97 75.9451 45.0950 106.7952
1997-98 84.0914 53.2413 114.9415
1998-99 89.0541 58.2040 119.9042
1999-00 90.2714 59.4213 121.1215
2000-01 112.0885 81.2384 142.9386
2001-02 90.3650 59.5149 121.2151
2002-03 92.5186 61.6686 123.3687
2003-04 103.0995 72.2494 133.9496
2004-05 118.7367 87.8866 149.5868
2005-06 144.5801 113.7301 175.4302
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ablab Bean Production Series: 1955-1956 to 2005-2006

Year Estimates Lower Limit | Upper Limit
1950-51 49.3871 -6.2338 105.0079
1951-52 23.1473 11.0163 35.2782
1952-53 23.0497 10.9187 35.1806
1953-54 22.8545 10.7235 34.9854
1954-55 18.7556 6.6247 30.8866
1955-56 23.5376 11.4067 35.6686
1956-57 31.1499 19.0189 43.2808
1957-58 29.8812 17.7502 42.0121
1958-59 23.0497 10.9187 35.1806
1959-60 24.4160 12.2850 36.5469
1960-61 21.0002 8.8693 33.1312
1961-62 26.1726 14.0417 38.3036
1962-63 36.3223 24.1913 48.4532
1963-64 36.3223 24.1913 48.4532
1964-65 32.6138 20.4828 44.7447
1965-66 21.6834 9.5524 33.8143
1966-67 20.8050 8.6741 32.9360
1967-68 18.5604 6.4295 30.6914
1968-69 22.6593 10.5284 34.7903
1969-70 29.9788 17.8478 42.1097
1970-71 33.3945 21.2636 45.5254
1971-72 31.5402 19.4093 43.6712
1972-73 31.5402 19.4093 43.6712
1973-74 27.3438 15.2128 39.4747
1974-75 34.7608 22.6298 46.8917
1975-76 35.9319 23.8010 48.0629
1976-77 31.1499 19.0189 43.2808
1977-78 44.7152 32.5843 56.8462
1978-79 46.1791 34.0482 58.3101




1979-80 64.1980 52.0670 76.3289
1980-81 39.4867 27.3557 51.6176
1981-82 39.3476 27.2167 51.4786
1982-83 43.9345 31.8036 56.0654
1983-84 43.9345 31.8036 56.0654
1984-85 58.2806 46.1497 70.4116
1985-86 49.5949 37.4639 61.7258
1986-87 43.8369 31.7060 55.9679
1987-88 45.5936 33.4626 57.7245
1988-89 39.1525 27.0215 51.2834
1989-90 30.9547 18.8237 43.0856
1990-91 36.0295 23.8986 48.1604
1991-92 40.2260 28.0950 52.3569
1992-93 33.1993 21.0684 45.3303
1993-94 36.2247 24.0937 48.3556
1994-95 41.5923 29.4613 53.7232
1995-96 38.9573 26.8263 51.0882
1996-97 44.6176 32.4867 56.7486
1997-98 45.2032 33.0723 57.3342
1998-99 43.1538 31.0228 55.2847
1999-00 50.2780 38.1471 62.4090
2000-01 54.2793 42.1484 66.4103
2001-02 62.6723 50.5413 74.8032
2002-03 61.7940 49.6630 73.9249
2003-04 67.4543 55.3234 79.5853
2004-05 74.0906 61.9597 86.2216
2005-06 77.9943 65.8634 90.1253
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Estimated Values and Their 95% Lower and Upper Confidence Limits
of the Fitted Model for Lima Bean Production Series: 1950-1951 to 2005-2006

Table (B. 6)

Year Estimates Lower Limit | Upper Limit
1950-51 6.6717 0.9046 12.4387
1951-52 6.2121 49131 7.5111
1952-53 6.0173 4.7182 7.3163
1953-54 6.4070 5.1080 7.7060
1954-55 6.9916 5.6925 8.2906
1955-56 7.1864 5.8874 8.4854
1956-57 4.1000 2.8009 5.3990
1957-58 4.1661 2.8671 5.4651
1958-59 4.2635 2.9645 5.5625
1959-60 2.5000 1.2009 3.7990
1960-61 2.6072 1.3082 3.9062
1961-62 3.1918 1.8928 4.4908
1962-63 4.8481 3.5491 6.1471
1963-64 8.6813 7.3823 9.9804
1964-65 4.2161 29171 5.5151
1965-66 2.9969 1.6979 4.2959
1966-67 2.3149 1.0159 3.6139
1967-68 1.9252 0.6262 3.2242
1968-69 1.1458 -0.1533 2.4448
1969-70 1.0483 -0.2507 2.3473
1970-71 1.0483 -0.2507 2.3473
1971-72 1.2432 -0.0558 2.5422
1972-73 1.0483 -0.2507 2.3473
1973-74 0.9509 -0.3481 2.2499
1974-75 0.6586 -0.6404 1.9576
1975-76 0.7560 -0.5430 2.0550
1976-77 0.7560 -0.5430 2.0550
1977-78 0.8535 -0.4456 2.1525
1978-79 0.8535 -0.4456 2.1525
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1979-80 0.9509 -0.3481 2.2499
1980-81 0.8535 -0.4456 2.1525
1981-82 0.8535 -0.4456 2.1525
1982-83 0.8535 -0.4456 2.1525
1983-84 0.8535 -0.4456 2.1525
1984-85 0.7560 -0.5430 2.0550
1985-86 0.9509 -0.3481 2.2499
1986-87 1.1458 -0.1533 2.4448
1987-88 1.1458 -0.1533 2.4448
1988-89 1.2432 -0.0558 2.5422
1989-90 1.1458 -0.1533 2.4448
1990-91 1.3406 0.0416 2.6396
1991-92 1.3406 0.0416 2.6396
1992-93 1.3406 0.0416 2.6396
1993-94 2.8021 1.5031 4.1011
1994-95 1.9252 0.6262 3.2242
1995-96 1.9252 0.6262 3.2242
1996-97 2.2175 0.9185 3.5165
1997-98 2.4123 1.1133 3.7114
1998-99 3.6789 2.3799 | 4.9780
1999-00 5.1404 3.8414 6.4394
2000-01 5.2378 3.9388 6.5368
2001-02 4.7507 3.4517 6.0497
2002-03 5.1404 3.8414 6.4394
2003-04 6.4070 5.1080 7.7060
2004-05 7.3813 6.0823 8.6803
2005-06 6.7967 5.4977 8.0957
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Figure C1 Control Chart of Fitted Model for Base Metal and Ores Exports Series
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Figure C4 Control Chart of Fitted Model for Lablab Bean Production Series
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Figure CS Control Chart of Fitted Model for Lima Bean Production Series
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